
COMPUTER ORGANIZATION

I B.TECH II SEM FOR

CSE

(JNTUK)

(R20)

HUMANITIES & BASIC SCIENCES DEPARTMENT

V S M COLLEGE OF ENGINEERING

RAMCHANDRAPURAM

E.G. Dt. - 533255

VSM COLLEGE OF ENGINEERING

RAMACHANDRAPURAM

1-2 Semester COMPUTER ORGANIZATION

UNIT I: Digital Computers and Data Representation: Introduction ,Numbering Systems, Decimal to

Binary Conversion, Binary Coded Decimal Numbers, Weighted Codes, Self Complementing Codes,

Cyclic Codes, Error Detecting Codes, Error Correcting Codes, Hamming Code for Error Correction,

Alphanumeric Codes, ASCI Code Data Representation: Data types, Complements, Fixed Point

Representation, Floating Point Representation. Boolean Algebra and Logical gates: Boolean Algebra

:Theorems and properties, Boolean functions, canonical and standard forms , minimization of Boolean

functions using algebraic identities; Karnaugh map representation and minimization using two and three

variable Maps ;Logical gates ,universal gates and Two-level realizations using gates : AND-OR, OR-

AND, NAND-NAND and NOR-NOR structures.

UNIT II: Digital logic circuits: Combinatorial Circuits: Introduction, Combinatorial Circuit Design

Procedure, Implementation using universal gates, Multi-bit adder, Multiplexers, Demultiplexers,

Decoders Sequential Switching Circuits: Latches and Flip-Flops, Ripple counters using T flip-flops;

Synchronous counters: Shift Registers; Ring counters

UNIT III: Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Booth

multiplication algorithm, Division Algorithms, Floating – point Arithmetic operations. Register Transfer

language and microinstructions :Bus memory transfer, arithmetic and logical micro-operations, shift and

rotate micro-operations Basic Computer Organization and Design: Stored program concept, computer

Registers, common bus system, Computer instructions, Timing and Control, Instruction cycle, Memory

Reference Instructions, Input–Output configuration and program Interrupt.

UNIT IV: Microprogrammed Control: Control memory, Address sequencing, microprogram example,

design of control unit. Central Processing Unit: General Register Organization, Instruction Formats,

Addressing modes, Data Transfer and Manipulation, Program Control: conditional Flags and Branching

UNIT V: Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate

Memory, Cache Memory. Input-Output Organization: Input-Output Interface, Asynchronous data

transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Text Books: 1. Digital Logic and Computer Design,Moriss Mano,11thEdition,PearsonEducation.

 2. Computer System Architecture,3rded., M.MorrisMano, PHI

Reference Books: 1. Digital Logic and Computer Organization, Rajaraman,Radhakrishnan,PHI,2006

 2. Computer Organization, 5thed.,Hamacher, VranesicandZaky,TMH,2002

 3. Computer Organization & Architecture :Designing for Performance, 7thed.,

William Stallings, PHI, 2006

Course Outcomes: By the end of the course the student will be able to

 Demonstrate and understanding of the design of the functional units of a digital computer system.

 Relate Postulates of Boolean algebra and minimize combinational functions.

 Recognize and manipulate representations of numbers stored in digital computers.

 Build the logic families and realization of logic gates.

 Design and analyze combinational and sequential circuits.

 Recall the internal organization of computers, CPU, memory unit and Input/Outputs and the

relations between its main components .

 Solve elementary problems by assembly language programming.

https://play.google.com/store/apps/details?id=com.jntufastupdates
https://play.google.com/store/apps/details?id=com.jntufastupdates

VSM COLLEGE OF ENGINEERING
RAMACHANDRAPURAM

DEPARTMENT OF HUMANITIES AND BASIC SCIENCES

Course Title Year/Sem Branch Periods per Week

COMPUTER

ORGANIZATION
I / II CSE

BRANCH
6

Unit

No

Outcomes Name of the Topic No. of

Periods

required

Total

Periods

Reference

Book

Methodology

to be adopted

I

CO 1:
Demonstrate

and
understanding

of the design of

the functional
units of a

digital

computer
system.

Unit-1 Digital Computers and Data

Representation

14
T1, T2

R20

Introduction ,Numbering Systems 1 Black Board

Decimal to Binary Conversion, Binary
Coded Decimal Numbers, Weighted

Codes, Self Complementing Codes,
2 Black Board

Cyclic Codes, Error Detecting Codes,

Error Correcting Codes,
2 E-Class Room

Hamming Code for Error Correction,
Alphanumeric Codes, ASCI Code, Data

Representation: Data types,

Complements,

2 E-Class Room

Fixed Point Representation, Floating

Point Representation.
1 E-Class Room

Boolean Algebra :Theorems and

properties, Boolean functions,
canonical and standard forms

1 Seminar

minimization of Boolean functions
using algebraic identities;

1 Black Board

Karnaugh map representation and
minimization using two and three

variable Maps

2 Black Board

Logical gates ,universal gates and Two-

level realizations using gates : AND-
OR, OR-AND, NAND-NAND and

NOR-NOR structures

2 E-Class Room

Course Outcomes:

By the end of the course the student will be able to

 Demonstrate and understanding of the design of the functional units of a digital

computer system.

 Relate Postulates of Boolean algebra and minimize combinational functions.

 Recognize and manipulate representations of numbers stored in digital

computers.

 Build the logic families and realization of logic gates.

 Design and analyze combinational and sequential circuits.

 Recall the internal organization of computers, CPU, memory unit and

Input/Outputs and the relations between its main components .

 Solve elementary problems by assembly language programming.

Unit-2 Digital logic circuits,

Sequential Switching Circuits

II

CO 2:
Relate

Postulates of

Boolean
algebra and

minimize

combinational
functions

Combinatorial Circuits: Introduction,

Combinatorial Circuit Design
Procedure

1

9
T1, T2

R20

Black Board

Implementation using universal gates,
Multi-bit adder

2 E-Class Room

Multiplexers, Demultiplexers,

Decoders
2 E-Class Room

Latches and Flip-Flops, Ripple

counters using T flip-flops
2 Black Board

Synchronous counters: Shift Registers;

Ring counters
2 E-Class Room

Unit-3 Computer Arithmetic,

Register Transfer language and

microinstructions, Basic

Computer Organization and

Design

III

CO 3 :

Recognize and
manipulate

representations

of numbers
stored in digital

computers

Addition and subtraction,
multiplication Algorithms

2

17
T1, T2

R20

Black Board

Booth multiplication algorithm,
Division Algorithms

2 E-Class Room

Floating – point Arithmetic operations 2 Black Board

Bus memory transfer, arithmetic and
logical micro-operations

2 Black Board

shift and rotate micro-operations 1 Black Board

Stored program concept, computer
Registers, common bus system

2 E-Class Room

Computer instructions, Timing and
Control

2 Black Board

Instruction cycle, Memory Reference
Instructions

2 Black Board

Input–Output configuration and
program Interrupt

2 E-Class Room

Unit-4 Micro programmed

Control , Central Processing Unit

IV

CO 4 :

Build the

logic families

and

realization of

logic gates,

Design and

analyze

combinational

and sequential

circuits.

Control memory, Address sequencing 2

10
T1, T2

R20

Black Board

Micro program example, design of
control unit

2 Black Board

General Register Organization,
Instruction Formats

2 E-Class Room

Addressing modes, Data Transfer and
Manipulation

2 E-Class Room

Program Control: conditional Flags and
Branching

2 Black Board

Unit-4 Memory Organization ,

Input-Output Organization

V

CO5:
Recall the

internal

organization

of computers,

CPU,

memory unit

and

Input/Outputs

and the

relations

between its

main

components ,

Solve

elementary

problems by

assembly

language

programming

Memory Hierarchy

2

10
T1, T2

R20

Black Board

Main Memory , Auxiliary memory

2 E-Class Room

Associate Memory , Cache Memory

2 Black Board

Input-Output Interface, Asynchronous
data transfer

2 E-Class Room

Modes of Transfer, Priority Interrupt
Direct memory Access

2 Black Board

 TOTAL 60

Text Books: 1. Digital Logic and Computer Design,Moriss Mano,11thEdition,PearsonEducation.

 2. Computer System Architecture,3rded., M.MorrisMano, PHI

Reference Books: 1. Digital Logic and Computer Organization, Rajaraman, Radhakrishnan,PHI,2006

 2. Computer Organization, 5thed.,Hamacher, VranesicandZaky,TMH,2002

 3. Computer Organization & Architecture : Designing for Performance, 7thed.,

William Stallings, PHI, 2006

Faculty Member Head of the Department Principal

 1

 2

 3

 5

 6

 7

 8

 9

 11

 12

 13

 14

 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

 35

 36

 37

 38

 39

40

41

42

43

44

45

 46

 47

 48

 49

 50

51

52

53

54

55

 56

 57

 58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Computer Arithmetic:

Introduction:

 Arithmetic instructions in digital computers manipulate data to

produce results necessary for the solution of computational

problems.

 These instructions perform arithmetic calculations and are

responsible for the bulk of activity involved in processing data in a

computer.

The four basic arithmetic operations are addition, subtraction,

multiplication and division. From these four bulk operations, it is

possible to formulate other arithmetic functions and solve scientific

problems by means of numerical analysis methods.

 An arithmetic processor is the part of a processor unit that executes

arithmetic operations. The data type assumed to reside in processor

registers during the execution of an arithmetic instruction is

specified in the definition of the instruction. A:n arithmetic

instruction may specify binary or decimal data, and in each case

the data may be in fixed- point or floating-point form.

 We must be thoroughly familiar with the sequence of steps to be

followed in order to carry out the operation and achieve a correct

result. The solution to any problem that is stated by a finite

number of well-defined procedural steps is called an algorithm.

 Usually, an algorithm will contain a number of procedural steps

which are dependent on results of previous steps. A convenient

method for presenting algorithms is a flowchart.

Addition and Subtraction:
 As we have discussed, there are three ways of representing negative

fixed-point binary

numbers: signed-magnitude, signed-1's complement, or signed-2's

complement. Most computers use the signed-2's complement

representation when performing arithmetic operations with

integers.

i. Addition and Subtraction with Signed-Magnitude Data:

When the signed numbers are added or subtracted, we find that there

are eight different conditions to consider, depending on the sign of

the numbers and the operation performed. These conditions are listed

in the first column of Table shown below.

Algorithm: (Addition with Signed-Magnitude Data)

i. When the signs of A and B are identical ,add the two

magnitudes and attach the sign of A to the result.

ii. When the signs of A and B are different, compare the

magnitudes and subtract the smaller number from the larger.

Choose the sign of the result to be the same as A if A > B or the

complement of the sign of A if A < B.

iii. If the two magnitudes are equal, subtract B from A and make

the sign of the result positive.

Algorithm: (Subtraction with Signed-Magnitude Data)

i. When the signs of A and B are different, add the two

magnitudes and attach the sign of A to the result.

ii. When the signs of A and B are identical, compare the

magnitudes and subtract the smaller number from the larger.

Choose the sign of the result to be the same as A if A > B or the

complement of the sign of A if A < B.

iii. If the two magnitudes are equal, subtract B from A and make

the sign of the result positive.

The two algorithms are similar except for the sign comparison. The

procedure to be followed for identical signs in the addition algorithm is

the same as for different signs in the subtraction algorithm, and vice

versa.

Hardware Implementation:

To implement the two arithmetic operations with hardware, it is first

necessary that the two numbers be stored in registers.

i. Let A and B be two registers that hold the magnitudes of the

numbers, and AS and BS be two flip-flops that hold the

corresponding signs.

ii. The result of the operation may be transferred to a third register:

however, a saving is achieved if the result is transferred into A and

AS. Thus A and AS together form an accumulator register.

Consider now the hardware implementation of the algorithms above.
o First, a parallel-adder is needed to perform the microoperation A + B.
o Second, a comparator circuit is needed to establish if A > B, A = B, or A

< B.

o Third, two parallel-subtractor circuits are needed to perform the

microoperations A - B and B - A. The sign relationship can be

determined from an exclusive-OR gate with AS and BS as inputs.

The below figure shows a block diagram of the hardware for

implementing the addition and subtraction operations. It consists of

registers A and B and sign flip-flops AS and BS.

o Subtraction is done by adding A to the 2' s complement of B. The

output carry is transferred to flip-flop E, where it can be checked

to determine the relative magnitudes of the two numbers.

o The add-overflow flip-flop AVF holds the overflow bit when A and B

are added.

Figure (i): Hardware for addition and subtraction with Signed-Magnitude

Data

The complementer provides an output of B or the complement of B

depending on the state of the mode control M.

 When M = 0, the output of B is transferred to the adder, the input

carry is 0, and the output of the adder is equal to the sum A + B.

 When M= 1, the l's complement of B is applied to the adder, the input
carry is 1, and output

This is equal to A plus the 2's

complement of B, which is equivalent to the subtraction A -

B.

Hardware Algorithm

Figure (j): Flowchart for add and subtract operations

ii. Addition and Subtraction with Signed-2's Complement Data

 The register configuration for the hardware implementation is

shown in the below Figure(a). We name the A register AC

(accumulator) and the B register BR. The leftmost bit in AC and

BR represent the sign bits of the numbers. The two sign bits are

added or subtracted together with the other bits in the

complementer and parallel adder. The overflow flip-flop V is set to

1 if there is an overflow. The output carry in this case is discarded.

 The algorithm for adding and subtracting two binary numbers in

signed-2' s complement representation is shown in the flowchart of

Figure(b). The sum is obtained by adding the contents of AC and

BR (including their sign bits). The overflow bit V is set to 1 if the

exclusive-OR of the last two carries is 1, and it is cleared to 0

otherwise. The subtraction operation is accomplished by adding the

content of AC to the 2's complement of BR.

 Comparing this algorithm with its signed-magnitude counterpart,

we note that it is much simpler to add and subtract numbers if

negative numbers are maintained in signed-2' s complement

representation.

Multiplication Algorithms:
Multiplication of two fixed-point binary numbers in signed-magnitude
representation is done with

paper and pencil by a process of successive shift and adds operations.

This process is best illustrated with a numerical example.

The process of multiplication:

• It consists of looking at successive bits of the multiplier, least significant
bit first.

• If the multiplier bit is a 1, the multiplicand is copied down;

otherwise, zeros are copied down.

• The numbers copied down in successive lines are shifted one

position to the left from the previous number.

• Finally, the numbers are added and their sum forms the product.

The sign of the product is determined from the signs of the multiplicand

and multiplier. If they are alike, the sign of the product is positive. If

they are unlike, the sign of the product is negative.

Hardware Implementation for Signed-Magnitude Data

The registers A, B and other equipment are shown in Figure (a). The

multiplier is stored in the Q register and its sign in Qs. The

sequence counter SC is initially set to a number equal to the

number of bits in the multiplier. The counter is decremented by 1

after forming each partial product. When the content of the counter

reaches zero, the product is formed and the process stops.

Figure(k): Hardware for multiply operation.

Initially, the multiplicand is in register B and the multiplier in Q,

Their corresponding signs are in Bs and Qs, respectively

The sum of A and B forms a partial product which is transferred to the
EA register.

Both partial product and multiplier are shifted to the right. This

shift will be denoted by the statement shr EAQ to designate the

right shift.

 The least significant bit of A is shifted into the most significant

position of Q, the bit from E is shifted into the most significant

position of A, and 0 is shifted into E. After the shift, one bit of the

partial product is shifted into Q, pushing the multiplier bits one

position to the right.

In this manner, the rightmost flip-flop in register Q, designated by Qn,

will hold the bit of the multiplier, which must be inspected next.

Hardware Algorithm:

Initially, the multiplicand is in B and the multiplier in Q. Their

corresponding signs are in Bs and Qs, respectively. The signs are

compared, and both A and Q are set to correspond to the sign of the

product since a double-length product will be stored in registers A and

Q. Registers A and E are cleared and the sequence counter SC is set to a

number equal to the number of bits of the multiplier.

After the initialization, the low-order bit of the multiplier in Qn is tested.

i. If it is 1, the multiplicand in B is added to the present partial
product in A .

ii. If it is 0 , nothing is done. Register EAQ is then shifted once to

the right to form the new partial product.

The sequence counter is decremented by 1 and its new value checked. If

it is not equal to zero, the process is repeated and a new partial product

is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the

most significant bits and Q holding the least significant bits.

A flowchart of the hardware multiply algorithm is shown in the below

figure (l).

Figure(l): Flowchart for multiply operation.

Figure (m): Numerical Example of multiplication

Booth Multiplication Algorithm:(multiplication of 2’s complement data):

Booth algorithm gives a procedure for multiplying binary integers in

signed-2's complement representation.

Booth algorithm requires examination of the multiplier bits and

shifting of the partial product. Prior to the shifting, the multiplicand

may be added to the partial product, subtracted from the partial

product, or left unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon

encountering the first least significant 1 in a string of 1's in the

multiplier.

2. The multiplicand is added to the partial product upon

encountering the first 0 (provided that there was a previous 1) in a

string of O's in the multiplier.

3. The partial product does not change when the multiplier bit is

identical to the previous multiplier bit.

Hardware implementation of Booth algorithm Multiplication:

Figure (n): Hardware for Booth Algorithm

The hardware implementation of Booth algorithm requires the register

configuration shown in figure (n). This is similar addition and

subtraction hardware except that the sign bits are not separated from the

rest of the registers. To show this difference, we rename registers A, B,

and Q, as AC, BR, and QR, respectively. Qn designates the least

significant bit of the multiplier in register

QR. An extra flip-flop Qn+1, is appended to QR to facilitate a double bit

inspection of the multiplier. The flowchart for Booth algorithm is shown

in Figure (o).

Hardware Algorithm for Booth Multiplication:

AC and the appended bit Qn+1 are initially cleared to 0 and the

sequence counter SC is set to a number n equal to the number of bits in

the multiplier. The two bits of the multiplier in Qn and Qn+1 are

inspected.

i. If the two bits are equal to 10, it means that the first 1 in a string

of 1's has been encountered. This requires a subtraction of the

multiplicand from the partial product in AC.

ii. If the two bits are equal to 01, it means that the first 0 in a string

of 0's has been encountered. This requires the addition of the

multiplicand to the partial product in AC.

iii. When the two bits are equal, the partial product does not change.

iv. The next step is to shift right the partial product and the

multiplier (including bit Qn+1). This is an arithmetic shift right

(ashr) operation which shifts AC and QR to the right and leaves the

sign bit in AC unchanged. The sequence counter is decremented and

the computational loop is repeated n times.

Figure (o): Booth Algorithm for multiplication of 2’s

complement numbers

Example: multiplication of (- 9) x (- 13) = + 117 is shown below.

Note that the multiplier in QR is negative and that the multiplicand in

BR is also negative. The 10-bit product appears in AC and QR and is

positive.

Figure (p): Example of Multiplication with Booth

Algorithm.

Division Algorithms:

 Division of two fixed-point binary numbers in signed-magnitude

representation is done with paper and pencil by a process of

successive compare, shift, and subtract operations.

The division process is illustrated by a numerical example in the below

figure (q).

 The divisor B consists of five bits and the dividend A consists of ten

bits. The five most significant bits of the dividend are compared

with the divisor. Since the 5-bit number is smaller than B, we try

again by taking the sixth most significant bits of A and compare

this number with B. The 6-bit number is greater than B, so we

place a 1 for the quotient bit. The divisor is then shifted once to

the right and subtracted from the dividend.

 The difference is called a partial remainder because the division

could have stopped here to obtain a quotient of 1 and a remainder

equal to the partial remainder. The process is continued by

comparing a partial remainder with the divisor.

• If the partial remainder is greater than or equal to the divisor, the

quotient bit is equal to 1. The divisor is then shifted right and

subtracted from the partial remainder.

• If the partial remainder is smaller than the divisor, the quotient

bit is 0 and no subtraction is needed. The divisor is shifted once to

the right in any case. Note that the result gives both a quotient and

a remainder.

Figure (q): Example of Binary Division

Hardware Implementation for Signed-Magnitude Data:

The hardware for implementing the division operation is identical

to that required for multiplication.

 The divisor is stored in the B register and the double-length

dividend is stored in registers A and Q. The dividend is shifted to

the left and the divisor is subtracted by adding its 2's

complement value. The information about the relative magnitude

is available in E.

 If E = 1, it signifies that A≥B. A quotient bit 1 is inserted into Q,

and the partial remainder is shifted to the left to repeat the

process.

 If E = 0, it signifies that A < B so the quotient in Qn remains a

0. The value of B is then added to restore the partial remainder

in A to its previous value. The partial remainder is shifted to the

left and the process is repeated again until all five quotient bits

are formed.

 Note that while the partial remainder is shifted left, the

quotient bits are shifted also and after five shifts, the quotient is

in Q and the final remainder is in A.

The sign of the quotient is determined from the signs of the dividend

and the divisor. If the two signs are alike, the sign o f the quotient is

plus. If they are unalike, the sign is minus. The sign of the remainder

is the same as the sign of the dividend.

Divide Overflow

 The division operation may result in a quotient with an overflow.

This is not a problem when working with paper and pencil but is

critical when the operation is implemented with hardware. This is

because the length of registers is finite and will not hold a

number that exceeds the standard length.

 To see this, consider a system that has 5-bit registers. We use one

register to hold the divisor and two registers to hold the dividend.

From the example shown in the above, we note that the quotient

will consist of six bits if the five most significant bits of the

dividend constitute a number greater than the divisor. The

quotient is to be stored in a standard 5-bit register, so the overflow

bit will require one more flip-flop for storing the sixth bit.

 This divide-overflow condition must be avoided in normal

computer operations because the entire quotient will be too long

for transfer into a memory unit that has words of standard

length, that is, the same as the length of registers.

 This condition detection must be included in either the

hardware or the software of the computer, or in a combination

of the two.

When the dividend is twice as long as the divisor,

i. A divide-overflow condition occurs if the high-order half bits of

the dividend constitute a number greater than or equal to the

divisor.

ii. A division by zero must be avoided. This occurs because any

dividend will be greater than or equal to a divisor which is equal

to zero. Overflow condition is usually detected when a special

flip-flop is set. We will call it a divide-overflow flip-flop and

label it DVF.

Hardware Algorithm:

1. The dividend is in A and Q and the divisor in B . The

sign of the result is transferred into Qs to be part of the quotient. A

constant is set into the sequence counter SC to specify the number of

bits in the quotient.

2. A divide-overflow condition is tested by subtracting the

divisor in B from half of the bits of the dividend stored in A. If A ≥ B,

the divide-overflow flip-flop DVF is set and the operation is

terminated prematurely. If A < B, no divide overflow occurs so the

value of the dividend is restored by adding B to A.

3. The division of the magnitudes starts by shifting the

dividend in AQ to the left with the high-order bit shifted into E. If

the bit shifted into E is 1, we know that EA > B because EA consists of

a 1 followed by n-1 bits while B consists of only n -1 bits. In this

case, B must be subtracted from EA and 1 inserted into Qn for the

quotient bit.

4. If the shift-left operation inserts a 0 into E, the divisor is

subtracted by adding its 2's complement value and the carry is

transferred into E . If E = 1, it signifies that A ≥ B; therefore, Qn is set

to 1 . If E = 0, it signifies that A < B and the original number is

restored by adding B to A . In the latter case we leave a 0 in Qn.

This process is repeated again with registers EAQ. After n

times, the quotient is formed in register Q and the remainder is

found in register A

Figure (r): Flowchart for Divide operation

Figure (s): Example of Binary Division

.

Basic Computer Organization

and Design

Instruction Codes:

The general purpose digital computer is capable of executing various

micro-operations and also can be instructed as to what specific sequence

of operations it must perform. The user of a computer can control the

process by using a program.

 A program is a set of instructions that specify the operations,

operands, and the sequence by which processing has to occur.

 A computer instruction is a binary code that specifies a sequence of

microoperations for the computer. Instruction codes together with

data are stored in memory. The computer reads each instruction

from memory and places it in a control register. The control then

interprets the binary code of the instruction and proceeds to

execute it by issuing a sequence of microoperations.

 An instruction code is a group of bits that instruct the computer to

perform a specific operation. It is usually divided into parts, each

having its own particular interpretation.

 The most basic part of an instruction code is its operation part. The

operation code of an instruction is a group of bits that define such

operations as add, subtract, multiply, shift, and complement.

 The operation part of an instruction code specifies the operation to

be performed. This operation must be performed on some data

stored in processor registers or in memory.

 An instruction code must therefore specify not only the operation

but also the registers or the memory words where the operands are

to be found, as well as the register or memory word where the

result is to be stored.

Stored Program Organization

The simplest way to organize a computer is to have one processor register

and an instruction code format with two parts. The first part specifies

the operation to be performed and the second specifies an address.

 The memory address tells the control where to find an operand in

memory. This operand is read from memory and used as the data to

be operated on together with the data stored in the processor

register.

The below figure shows this type of organization.

Figure (k): Stored program organization

Instructions are stored in one section of memory

and data in another. EX: A memory unit with 4096 words, we need 12

bits to specify an address since 212 = 4096. If we store each instruction

code in one 16-bit memory word, we have available four bits for the

operation code (opcode) to specify one out of 16 possible operations, and

12 bits to specify the address of an operand.

The control reads a 16-bit instruction from the

program portion of memory. It uses the 12-bit address part of the

instruction to read a 16-bit operand from the data portion of memory. It

then executes the operation specified by the operation code.

 Computers that have a single-processor register usually assign to it

the name accumulator and label it AC . The operation is

performed with the memory operand and the content of AC .

 If an operation in an instruction code does not need an operand

from memory, the rest of the bits in the instruction can be used for

other purposes. For example, operations such as clear AC,

complement AC, and increment AC operate on data stored in the

AC register. They do not need an operand from memory.

Indirect Address

 When the second part of an instruction code specifies an operand,

the instruction is said to have an immediate operand.

 When the second part specifies the address of an operand, the
instruction is said to have a

direct address.

 When the bits in the second part of the instruction designate an

address of a memory word in which the address of the operand is

found, the instruction is said to an indirect address. One bit of the

instruction code can be used to distinguish between a direct and

an indirect address.

 An effective address is the address of the operand.

Figure (l): Demonstration of direct and indirect

address.

Computer Registers:

Computer instructions are normally stored in

consecutive memory locations and are executed sequentially one at a

time. The control reads an instruction from a specific address in

memory and executes it. It then continues by reading the next

instruction in sequence and executes it, and so on.

This type of instruction sequencing needs a counter to

calculate the address of the next instruction after execution of the

current instruction is completed. It is also necessary to provide a register

in the control unit for storing the instruction code after it is read from

memory. The computer needs processor registers for manipulating data

and a register for holding a memory address.

The registers available in the computer are shown in the below figure

(m) and table (f), a brief description of their function and the number

of bits that they contain also given.

Figure (m): Basic computer registers and memory.

Table (f): List of Registers for the Basic computer.

Common Bus System:

 The basic computer has eight registers, a memory unit, and a

control unit. Paths must be provided to transfer information from

one register to another and between memory and registers.

 The number of wires will be excessive if connections are made

between the outputs of each register and the inputs of the other

registers. A more efficient scheme for transferring information in a

system with many registers is to use a common bus.

The connection of the registers and memory of the basic computer to a

common bus system is shown in the below figure (n).

Figure (n): Basic computer registers connected to a

common bus.

 The outputs of seven registers and memory are connected to the

common bus. The specific output that is selected for the bus lines at

any given time is determined from the binary value of the selection

variables S2, S1, and S0.

For example1, the number along the output of DR is 3. The 16-bit

outputs of DR are placed on the bus lines when S2S1S0 = 011 since this is

the binary value of decimal 3.

For example2, The memory places its 16-bit output onto the bus when

the read input is activated and S2S1S0 = 111.

 The content of any register can be applied onto the bus and an

operation can be performed in the adder and logic circuit during

the same clock cycle. The clock transition at the end of the cycle

transfers the content of the bus into the designated destination

register and the output of the adder and logic circuit into AC.

For example, the two rnicrooperations

DR AC and AC DR

can be executed at the same time. This can be done by placing the

content of AC on the bus (with S2S1S0 = 100), enabling the LD (load)

input of DR, transferring the content of DR through the adder and logic

circuit into AC, and enabling the LD (load) input of AC, all during the

same clock cycle.

Computer Instructions:

The basic computer has three types of instruction code formats,
1. Memory-reference instruction.
2. Register-reference instruction.
3. An input-output instruction.

Each format has 16 bits. The operation code (opcode) part of the

instruction contains three bits and the meaning of the remaining 13 bits

depends on the operation code encountered.

Figure (n): Basic computer instruction formats

The type of instruction is recognized by the computer control from the

four bits in positions 12 through 15 of the instruction.

 If the three opcode bits in positions 12 to 14 are not equal to 111,

the instruction is a memory-reference type and the bit in position

15 is taken as the addressing mode I. A memory-reference

instruction uses 12 bits to specify an address and one bit to specify

the addressing mode I. I = 0 for direct address and I = 1 for indirect

address.

 If the 3-bit opcode = 111, control then inspects the bit in position

15. If this bit = 0, the instruction is a register-reference type. These

instructions use 16 bits to specify an operation.

 If the bit I = 1, the instruction is an input-output type. These

instructions also use all 16 bits to specify an operation.

The instructions for the computer are listed in Table (g, h, i).

Table (g): Memory-reference instructions

Table (h): Register-reference instructions

Table (i): Input-output instructions

The hexadecimal code is equal to the equivalent hexadecimal

number of the binary code used for the instruction. By using the

hexadecimal equivalent we reduced the 16 bits of an instruction code to

four digits with each hexadecimal digit being equivalent to four bits.

A) memory-reference instruction has an address part of 12 bits. The

address part is denoted by three x's and stand for the three hexadecimal

digits corresponding to the 12-bit address. The last bit of the instruction

is designated by the symbol I.

i. When I = 0, the last four bits of an instruction have a

hexadecimal digit equivalent from 0 (000) to 6 (110) since the

last bit is 0.

ii. When I = I, the hexadecimal digit equivalent of the last four bits

of the instruction ranges from 8 (1000) to E (1110) since the

last bit is I.

B) Register-reference instructions use 16 bits to specify an operation. The

leftmost four bits are always 0111, which is equivalent to hexadecimal

7. The other three hexadecimal digits give the binary equivalent of the

remaining 12 bits.

C) The input-output instructions also use all 16 bits to specify an

operation. The last four bits are always 1111, equivalent to

hexadecimal F.

Instruction Set Completeness

A computer should have a set of instructions so that the user can

construct machine language programs to evaluate any function that is

known to be computable. The set of instructions are said to be complete if

the computer includes a sufficient number of instructions in each of the

following categories:

1. Arithmetic, logical, and shift instructions.

2. Instructions for moving information to and from memory and processor
registers.

3. Program control instructions together with instructions that check status
conditions.

4. Input and output instructions.

Instruction Cycle:

A program residing in the memory unit of the computer consists of a

sequence of instructions. The program is executed in the computer by

going through a cycle for each instruction. Each instruction cycle in

turn is subdivided into a sequence of subcycles or phases. In the basic

computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect

address.

4. Execute the instruction.

Upon the completion of step 4, the control goes back to

step 1 to fetch, decode, and execute the next instruction. This process

continues indefinitely unless a HALT instruction is encountered.

Fetch and Decode:

Initially, the program counter PC is loaded with the address of the

first instruction in the program. The sequence counter SC is cleared to 0,

providing a decoded timing signal T0. After each clock pulse, SC is

incremented by one, so that the timing signals go through a sequence T0,

T1, T2, and so on. The rnicrooperations for the fetch and decode phases

can be specified by the following register transfer statements.

Since only AR is connected to the address inputs of memory, it is

necessary to transfer the address from PC to AR during the clock

transition associated with timing signal T0. The instruction read from

memory is then placed in the instruction register IR with the clock

transition associated with timing signal T1. At the same time, PC is

incremented by one to prepare it for the address of the next instruction

in the program. At time T2, the operation code in IR is decoded, the

indirect bit is transferred to flip-flop I, and the address part of the

instruction is transferred to AR. Note that SC is incremented after each

clock pulse to produce the sequence T0, T1, and T2.

Figure (o): Register transfers for the fetch phase

The above Figure (o) shows how the first two register transfer statements

are implemented in the bus system. To provide the data path for the

transfer of PC to AR we must apply timing signal T0 to achieve the

following connection:

1. Place the content of PC onto the bus by making the bus

selection inputs S2 S1 S0 equal to 010.

2. Transfer the content of the bus to AR by enabling

the LD input of AR. The next clock transition initiates

the transfer from PC to AR since T0 = 1.

In order to implement the second statement
T1: IR M[AR], PC PC + 1

It is necessary to use timing signal T1 to provide the following connections in

the bus system.

1. Enable the read input of memory.
2. Place the content of memory onto the bus by making S2 S1 S0 = 111.
3. Transfer the content of the bus to IR by enabling the LD input of IR.

4. Increment PC by enabling the INR input of PC.

Determine the Type of Instruction

The timing signal that is active after the decoding is T3. During time T3

the control unit determines the type of instruction that was just read

from memory.

Decoder output D7 is equal to 1 if the operation code is equal to binary 111.

 If D7 = 1, the instruction must be a register-reference or input-0utput

type.

 If D7 = 0, the operation code must be one of the other seven

values 000 through 110, specifying a memory-reference

instruction.

The three instruction types are subdivided into four

separate paths. The selected operation is activated with the clock

transition associated with timing signal T3.This can be symbolized as

follows:

When a memory-reference instruction with I = 0 is encountered, it is not

necessary to do anything since the effective address is already in AR.

However, the sequence counter SC must be incremented when D7’T3 = 1,

so that the execution of the memory-reference instruction can be

continued with timing variable T4. A register-reference or input-output

instruction can be executed with the clock associated with timing signal

T3. After the instruction is executed, SC is cleared to 0 and control

returns to the fetch phase with T0 = 1.

The flowchart of Figure (p) presents an initial configuration for the

instruction cycle and shows how the control determines the instruction

type after the decoding

Figure (p): Flowchart for instruction cycle (initial

configuration).

Register-Reference Instructions:

Register-reference instructions are recognized by the control when D7 =

1 and I = 0. These instructions use bits 0 through 11 of the instruction

code to specify one of 12 instructions. These 12 bits are available in

IR(0 -11). They were also transferred to AR during time T2 .

 Each control function needs the Boolean relation D7 I' T3, which

we designate for convenience by the symbol r . The control

function is distinguished by one of the bits in

IR(0-11). By assigning the symbol Bi to bit i of IR, all control

functions can be simply denoted by rBi.

 For example, the instruction CLA has the hexadecimal code 7800,

which gives the binary equivalent 0111 1000 0000 0000.

i. The first bit is a zero and is equivalent to I'.

ii. The next three bits constitute the operation code and are

recognized from decoder output D7.

iii. Bit 11 in IR is 1 and is recognized from B11.

The control function that initiates the rnicrooperation for

this instruction is D7 I' T3 B11 = r B11

Table (j): Execution of Register-Reference Instructions

Memory-Reference Instructions:
 The below Table (k) lists the seven memory-reference instructions.

The decoded output Di for i = 0, 1, 2, 3, 4, 5, and 6 from the

operation decoder that belongs to each instruction is included in

the table.

 The effective address of the instruction is in the address register

AR and was placed there during timing signal T2 when I = 0, or

during timing signal T3 when I = 1. The execution of the

memory-reference instructions starts with timing signal T4.

Table (k): Memory-Reference Instructions

AND : AND to AC

This is an instruction that performs the AND logic operation on pairs of

bits in AC and the memory word specified by the effective address. The

result of the operation is transferred to AC. The rnicrooperations that

execute this instruction are:

D0T4: DR M[AR]

D0T5: AC AC Ʌ DR, SC 0

ADD : ADD to AC

This instruction adds the content of the memory word specified by the

effective address to the value of AC. The sum is transferred into AC and

the output carry C,., is transferred to the E (extended accumulator) flip-

flop. The rnicrooperations needed to execute this instruction are:

D1T4 : DR M[AR]
D1T5: AC AC + DR, E Cout, SC 0

LDA: Load to AC

This instruction transfers the memory word specified by the effective address

to AC . The rnicrooperations needed to execute this instruction are:

D2T4: DR M[AR]

D2T5: AC DR, SC

0

STA: Store AC

This instruction stores the content of AC into the memory word specified

by the effective address. Since the output of AC is applied to the bus and

the data input of memory is connected to the bus, we can execute this

instruction with one microoperation:

BUN: Branch Unconditionally
 This instruction transfers the program to the instruction specified by

the effective address.

 The BUN instruction allows the programmer to specify an

instruction out of sequenceand we say that the program branches

(or jumps) unconditionally. The instruction is executed with one

rnicrooperation:

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program

called a subroutine or procedure. When executed, the BSA instruction

stores the address of the next instruction in sequence (which is available

in PC) into a memory location specified by the effective address. The

effective address plus one is then transferred to PC to serve as the address

of the first instruction in the subroutine.

BSA: Branch and Save Return

Address EX:

The BSA instruction is assumed to be in memory at address 20.

The I bit is 0 and the address part of the instruction has the binary

equivalent of 135. After the fetch and decode phases, PC contains 21,

which is the address of the next instruction in the program (referred to

as the return address). AR holds the effective address 135. This is shown

in part (a) of the figure. The BSA instruction performs the following

numerical operation:

The result of this operation is shown in part (b) of the figure. The return

address 21 is stored in memory location 135 and control continues with

the subroutine program starting from address 136. The return to the

original program (at address 21) is accomplished by means of an

indirect BUN instruction placed at the end of the subroutine. When

this instruction is executed, control goes to the indirect phase to read the

effective address at location 135, where it finds the previously saved

address 21. When the BUN instruction is executed, the effective address

21 is transferred to PC. The next instruction cycle finds PC with the

value 21, so control continues to execute the instruction at the return

address.

It is not possible to perform the operation of the BSA instruction in one

clock cycle when we use the bus system of the basic computer. To use the

memory and the bus properly, the BSA instruction must be executed

With a sequence of two microoperations:

Timing signal T4 initiates a memory write operation, places the content

of PC onto the bus, and enables the INR input of AR . The memory write

operation is completed and AR is incremented by the time the next clock

transition occurs. The bus is used at T5 to transfer the content of AR to

PC.

ISZ: Increment and Skip if Zero

This instruction increments the word specified by the effective address,

and if the incremented value is equal to 0, PC is incremented by 1.

The programmer usually stores a negative number (in 2's complement)

in the memory word. As this negative number is repeatedly

incremented by one, it eventually reaches the value of zero. At that

time PC is incremented by one in order to skip the next instruction in

the program.

A flowchart showing all microoperations for the execution of

the seven memory- reference instructions is shown in Figure (q). The

control functions are indicated on top of each box. The microoperations

that are performed during time T4, T5, or T6, depend on the operation

code value. The sequence counter SC is cleared to 0 with the last timing

signal in each case. This causes a transfer of control to timing signal T0

to start the next instruction cycle.

Figure (q): Flowchart for Memory-reference instructions

Input-Output and Interrupt:
computer can serve no useful purpose unless it communicates
with the external

environment. Instructions and data stored in memory must come from

some input device. Computational results must be transmitted to the user

through some output device. Commercial computers include many types

of input and output devices.

Input-Output Configuration

The terminal sends and receives serial information. Each quantity of

information has eight bits of an alphanumeric code. The serial

information from the keyboard is shifted into the input register INPR.

The serial information for the printer is stored in the output register

OUTR . These two registers communicate with a communication interface

serially and with the AC in parallel.

Figure (r): Input-Output configuration

The process of information transfer is as follows: Initially, the input flag

FGI is cleared to 0. When a key is struck in the keyboard, an 8-bit

alphanumeric code is shifted into INPR and the input flag FGI is set to

1. As long as the flag is set, the information in INPR cannot be changed

by striking another key. The computer checks the flag bit; if it is 1, the

information from INPR is transferred in parallel into AC and FGI is

cleared to 0. Once the flag is cleared, new information can be shifted

into INPR by striking another key.

Initially, the output flag FGO is set to 1. The computer checks the flag

bit; if it is 1, the information from AC is transferred in parallel to OUTR

and FGO is cleared to 0. The output device accepts the coded

information, prints the corresponding character, and when the

operation is completed, it sets FGO to 1. The computer does not load a

new character into OUTR when FGO is 0 because this condition

indicates that the output device is in the process of printing the

character.

Input-Output Instructions

Input and output instructions are needed for transferring information to

and from AC register, for checking the flag bits, and for controlling the

interrupt facility.

Input-output instructions have an operation code 1111 and are

recognized by the control when D7 = 1 and I = 1. The remaining bits of

the instruction specify the particular operation. The control functions

and microoperations for the input-output instructions are listed in

Table (l).

Table (l): Input-Output instructions

Program Interrupt

The process of communication discussed so far is referred to as

programmed control transfer. The computer keeps checking the flag bit,

and when it finds it set, it initiates an information transfer. The

difference of information flow rate between the computer and the input-

output device makes this type of transfer inefficient.

 To see why this is inefficient, consider a computer that can go

through an instruction cycle in 1µs. Assume that the input-output

device can transfer information at a maximum rate of 10

characters per second. This is equivalent to one character every

100,000 µs. Two instructions are executed when the computer

checks the flag bit and decides not to transfer the information.

This means that at the maximum rate, the computer will check

the flag 50,000 times between each transfer. The computer is

wasting time while checking the flag instead of doing some other

useful processing task.

 An alternative to the programmed controlled procedure is to let the

external device inform the computer when it is ready for the

transfer. In the meantime the computer can be busy with other

tasks. This type of transfer uses the interrupt facility.

 While the computer is running a program, it does not check the

flags. However, when a flag is set , the computer is momentarily

interrupted from proceeding with the current program and is

informed of the fact that a flag has been set. The computer deviates

momentarily from what it is doing to take care of the input or

output transfer. It then returns to the current program to continue

what it was doing before the interrupt.

 The interrupt enable flip-flop lEN can be set and cleared with two

instructions (IOF and ION instructions).

Figure (s): Flowchart for interrupt cycle

The way that the interrupt is handled by the computer can be

explained by means of the flowchart of Figure (s).

 An interrupt flip-flop R is included in the computer. When R = 0,

the computer goes through an instruction cycle.

 During the execute phase of the instruction cycle lEN is checked

by the control. If it is 0, it indicates that the programmer does not

want to use the interrupt, so control continues with the next

instruction cycle.

 If lEN is 1, control checks the flag bits. If both flags are 0, it

indicates that neither the input nor the output registers are ready

for transfer of information. In this case, control continues with the

next instruction cycle. If either flag is set to 1 while lEN = 1, flip-

flop R is set to 1.

 At the end of the execute phase, control checks the value of R, and

if it is equal to 1, it goes to an interrupt cycle instead of an

instruction cycle.

The interrupt cycle is a hardware implementation of a branch and save
return address(BSA)

operati

on. EX:

Figure (t): Demonstration of Interrupt Cycle

An example that shows what happens during the interrupt

cycle is shown in Figure (t). Suppose that an interrupt occurs and R is

set to 1 while the control is executing the instruction at address 255. At

this time, the return address 256 is in PC. The programmer has

previously placed an input-output service program in memory starting

from address 1120 and a BUN 1120 instruction at address 1. This is

shown in Figure (a).

When control reaches timing signal T0 and finds that R = 1, it

proceeds with the interrupt cycle. The content of PC (256) is stored in

memory location 0, PC is set to 1, and R is cleared to 0. At the

beginning of the next instruction cycle, the instruction that is read from

memory is in address 1 since this is the content of PC. The branch

instruction at address 1 causes the program to transfer to the input-

output service program at address 1120. This program checks the flags,

determines which flag is set, and then transfers the required input or

output information. Once this is done, the program returns to the

location where it was interrupted. This is shown in Figure (b).

Interrupt Cycle

The interrupt cycle is initiated after the last execute phase if the

interrupt flip-flop R is equal to 1. This flip-flop is set to 1 if lEN = 1

and either FGI or FGO are equal to 1. This can happen with any clock

transition except when timing signals T0, T1 or T2 are active. The

condition for setting flip- flop R to 1 can be expressed with the

following register transfer statement:

During the first timing signal AR is cleared to 0, and the content of PC

is transferred to the temporary register TR. With the second timing

signal, the return address is stored in memory at location 0 and PC is

cleared to 0. The third timing signal increments PC to 1, clears lEN and

R, and control goes back to T0 by clearing SC to 0. The beginning of the

next instruction cycle has the condition R' T0 and the content of PC is

equal to 1. The control then goes through an instruction cycle that

fetches and executes the BUN instruction in location 1.

Complete Computer Description:
The final flowchart of the instruction cycle, including the interrupt cycle
for the basic computer, is

shown in the below figure (u). The interrupt flip-flop R may be set at

any time during the indirect or execute phases. Control returns to timing

signal T0 after SC is cleared to 0.

 If R = 1, the computer goes through an interrupt cycle.
 If R = 0, the computer goes through an instruction cycle.

If the instruction is one of the memory-reference instructions, the

computer first checks if there is an indirect address and then continues

to execute the decoded instruction. If the instruction is one of the

www.jntufastupdates.com

http://www.jntufastupdates.com/

register-reference instructions, it will be executed. If it is an input-

output instruction, it will be executed.

Figure (u): Flowchart for computer operation

Table (m): Control functions and microoperations for

the Basic computer

Instead of using a flowchart, we can describe the operation of the

computer with a list of register transfer statements. This is done by

accumulating all the control functions and microoperations in one

table, as shown in the below Table (m).

The register transfer statements in this table describe in a concise form

the internal organization of the basic computer. They also give all the

information necessary for the design of the logic circuits of the computer.

A register transfer language is useful not only for describing the internal

organization of a digital system but also for specifying the logic circuits

needed for its design.

Page 1

Syllabus:

Central Processing Unit: General Register Organization, STACK Organization. Instruction

Formats, Addressing Modes, Data Transfer and Manipulation, Program Control, Reduced

Instruction Set Computer.

Microprogrammed Control: Control Memory, Address Sequencing, Micro Program example,

Design of Control Unit.

Introduction:

The part of the computer that performs the bulk of data-processing operations is called

the central processing unit and is referred to as the CPU. The CPU is made up of three major

parts, as shown in Figure (1). The register set stores intermediate data used during the

execution of the instructions. The arithmetic logic unit (ALU) performs the required

microoperations for executing the instructions. The control unit supervises the transfer of

information among the registers and instructs the ALU as to which operation to perform.

Figure (1): Major components of CPU
One boundary where the computer designer and the computer programmer see the same

machine is the part of the CPU associated with the instruction set.

 From the designer's point of view, the computer instruction set provides the

specifications for the design of the CPU. The design of a CPU is a task that in large

part involves choosing the hardware for implementing the machine instructions.

 The user who programs the computer in machine or assembly language must be

aware of the register set, the memory structure, the type of data supported by the

instructions, and the function that each instruction performs.

The following sections describe the organization and architecture of the CPU with an emphasis

on the user's view of the computer, how the registers communicate with the ALU through buses,

explain the operation of the memory stack, the type of instruction formats available, the

addressing modes used to retrieve data from memory, and also the concept of reduced

instruction set computer (RISC).

General Register Organization:

 We know that the memory locations are needed for storing pointers, counters, return

addresses, temporary results, and partial products during multiplication. Having to

Page 2

refer to memory locations for such applications is time consuming because memory

access is the most time-consuming operation in a computer.

Page 3

 It is more convenient and more efficient to store these intermediate values in processor

registers. When a large number of registers are included in the CPU, it is most efficient

to connect them through a common bus system.

 The registers communicate with each other not only for direct data transfers, but also

while performing various microoperations. Hence it is necessary to provide a common

unit that can perform all the arithmetic, logic, and shift microoperations in the

processor.

A bus organization for seven CPU registers is shown in the below figure.

Figure (2): Bus organization for CPU registers
The output of each register is connected to two multiplexers (MUX) to form the two buses A and
B. The selection lines in each multiplexer select one register or the input data for the particular

bus. The A and B buses form the inputs to a common arithmetic logic unit (ALU). The

operation selected in the ALU determines the arithmetic or logic microoperation that is to be

performed. The result of the microoperation is available for output data and also goes into the

inputs of all the registers. The register that receives the information from the output bus is

selected by a decoder. The decoder activates one of the register load inputs, thus providing a

transfer path between the data in the output bus and the inputs of the selected destination

register.

The control unit that operates the CPU bus system directs the information flow through

the registers and ALU by selecting the various components in the system. For example, to

perform the operation

R 1 R2 + R3

Page 4

the control must provide binary selection variables to the following selector inputs:
1. MUX A selector (SELA): to place the content of R2 into bus

A. 2 . MUX B selector (SELB): to place the content of R 3 into

bus B.

3 . ALU operation selector (OPR): to provide the arithmetic addition A + B.

Page 5

4. Decoder destination selector (SELD): to transfer the content o f the output bus into R1.

Control word
There are 14 binary selection inputs in the unit, and their combined value specifies a

control word. The 14-bit control word is defined in Figure (3). It consists of four fields. Three

fields contain three bits each, and one field has five bits. The three bits of SELA select a source

register for the A input of the ALU. The three bits of SELB select a register for the B input of

the ALU. The three bits of SELD select a destination register using the decoder and its seven

load outputs. The five bits of OPR select one of the operations in the ALU. The 14-bit control

word when applied to the selection inputs specify a particular microoperation.

Figure (3): Control word

The encoding of the register selections is specified in the Table (a). The 3-bit binary

code listed in the first column of the table specifies the binary code for each of the three fields.

The register selected by fields SELA, SELB, and SELD is the one whose decimal number is

equivalent to the binary number in the code.

When SELA or SELB is 000, the corresponding multiplexer selects the external input

data. When SELD = 000, no destination register is selected but the contents of the output bus

are available in the external output.

Table (1): Encoding of Register Selection Fields
The ALU provides arithmetic and logic operations. The encoding of the ALU Operations are

specified in the Table (b). The OPR field has five bits and each operation is designated with a

symbolic name.

Page 6

Table (2): Encoding of ALU operations

Page 7

Examples of Microoperations:
A control word of 14 bits is needed to specify a rnicrooperation in the CPU. The control word for

a given microoperation can be derived from the selection variables. For example, the subtract

rnicrooperation given by the statement

R 1 R 2 – R3
specifies R2 for the A input of the ALU, R3 for the B input of the ALU, R1 for the destination

register, and an ALU operation to subtract A - B. Thus the control word is specified by the four

fields and the corresponding binary value for each field is obtained from the encoding listed in

Tables (1) and (2). The binary control word for the subtract rnicrooperation is 010 011 001

00101 and is obtained as follows:

The control word for this microoperation and a few others are listed in the below
table.

Table (3): Encoding of ALU operations

STACK Organization:

A useful feature that is included in the CPU of most computers is a stack or last-in, first-out

(LIFO) list. A stack is a storage device that stores information in such a manner that the

item stored last is the first item retrieved.

 The operation of a stack can be compared to a stack of trays. The last tray placed on top

of the stack is the first to be taken off.

The register that holds the address for the stack is called a stack pointer (SP) because its value

always points at the top item in the stack.

The two operations of a stack are the insertion and deletion of items.
1. Push or push-down (insertion operation)
2. Pop or pop-up (deletion operation)

Page 8

Figure (4): the organization of a 64-word register stack.

Register Stack

A stack can be placed in a portion of a large memory or it can be organized as a collection of a

finite number of memory words or registers. Figure (3) shows the organization of a 64-word

register stack. The stack pointer register SP contains a binary number whose value is equal to

the address of the word that is currently on top of the stack.

In a 64-word stack, the stack pointer contains 6 bits because 26 = 64. Since SP

has only six bits, it cannot exceed a number greater than 63 (111111 in binary). When 63 is

incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but SP can

accommodate only the six least significant bits.

Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit

register FULL is set to 1 when the stack is full, and the one-bit register EMPTY is set to 1 when

the stack is empty of items. DR is the data register that holds the binary data to be written into

or read out of the stack.

Push:

Initially, SP is cleared to 0, EMPTY is set to 1, and FULL is cleared to 0, so that SP

points to the word at address 0 and the stack is marked empty and not full. If the stack is not

full (if FULL

= 0), a new item is inserted with a push operation. The push operation is implemented with the

following sequence of microoperations;

SP SP + 1 Increment stack pointer
M [SP] DR Write item on top of the stack

If (SP = 0) then (FULL 1) Check if stack is full

EMPTY 0 Mark the stack not empty

Pop:
A new item is deleted from the stack if the stack is not empty (if EMPTY = 0). The pop

operation consists of the following sequence of microoperations:

DR M [SP] Read item from the top of stack

Page 9

SP SP – 1 Decrement stack pointer

If (SP = 0) then (EMTY 1) Check if stack is

empty FULL 0 Mark the stack not full

Page 10

Memory Stack
A stack can exist as a stand-alone unit as in Figure (3) or can be implemented in a random-

access memory attached to a CPU. The implementation of a stack in the CPU is done by

assigning a portion of memory to a stack operation and using a processor register as a stack

pointer. Figure (4) shows a portion of computer memory partitioned into three segments:

program, data, and stack.

Figure (5): Computer memory with program, data and stack segments

Reverse Polish Notation
A stack organization is very effective for evaluating arithmetic expressions. The common

mathematical method of writing arithmetic expressions imposes difficulties when evaluated by

a computer.

A * B + C * D infix notation
The Polish mathematician Lukasiewicz showed that arithmetic expressions can be represented in

Page 11

prefix notation . This representation, often referred to as Polish notation, places the operator

Page 12

before the operands. The postfix notation, referred to as reverse Polish notation (RPN), places the

operator after the operands. The following examples demonstrate the three representations:

A + B Infix notation
+ AB Prefix or Polish notation
AB + Postfix or reverse Polish notation

The reverse Polish notation is in a form suitable for stack manipulation. The expression
A * B + C * D

is written in reverse Polish notation as

Conversion to Reverse Polish Notation

AB * CD * +

The conversion from infix notation to reverse Polish notation must take into consideration the

operational hierarchy adopted for infix notation.

 This hierarchy dictates that we first perform all arithmetic inside inner parentheses,

then inside outer parentheses, and do multiplication and division operations before

addition and subtraction operations.

Let I be an algebraic expression written in infix notation. I may contain parentheses, operands,

and operators. For simplicity of the algorithm we will use only +, –, *, /, % operators. The

precedence of these operators can be given as follows:

Higher priority *, /, %

Lower priority +, –

No doubt, the order of evaluation of these operators can be changed by making use of

parentheses. For example, if we have an expression A + B * C, then first B * C will be done and

the result will be added to A. But the same expression if written as, (A + B) * C, will evaluate

A + B first and then the result will be multiplied with C. Consider the expression

(A + B) * (C * (D + E) + F)

The converted expression is
AB + CDE + * F + *

Step 1: Add “)” to the end of the infix expression

Step 2: Push “(” on to the stack

Step 3: Repeat until each character in the infix notation is

scanned IF a “(” is encountered, push it onto the stack

IF an operand (whether a digit or a character) is encountered, add it

to the postfix expression.

IF a “)” is encountered, then
a. Repeatedly pop from stack and add it to the postfix

expression until a “(” is encountered.

b. Discard the “(”. That is, remove the (from stack and do not

add it to the postfix expression

IF an operator ‘O’ is encountered, then
a. Repeatedly pop from stack and add each operator (popped

from the stack) to the postfix expression which has the same

precedence or a higher precedence than ‘O’

b. Push the operator ‘O’ to the stack

Page 13

Step 4: Repeatedly pop from the stack and add it to the postfix expression until

the stack is empty

Page 14

Example 1: A*B+C*D, first add “)” to the given expression i.e., A*B+C*D) and

also push “(” onto the stack.

InfixCharacter Scanned Stack Postfix Expression

 (

A (A

* (* A

B (* AB

+ (+ AB*

C (+ AB*C

* (+* AB*C

D (+* AB*CD

) (+* AB*CD*+

Example 2: (A + B) * (C * (D + E) + F)

 First add “)” to the given expression i.e., (A + B) * (C * (D + E) + F)) and

also push “(” onto the stack.

Infix Character
Scanned

Stack

Postfix Expression

(

(((

A ((A

+ ((+ A

B ((+ AB

) (AB+

* (* AB+

((*(AB+

C (*(AB+C

* (*(* AB+C

((*(*
(

AB+C

D (*(*

(

AB+CD

Page 15

+ (*(*(+ AB+CD

E (*(*(+ AB+CDE

Page 16

) (*(* AB+CDE+

+ (*(+ AB+CDE+*

F (*(+ AB+CDE+*F

) (* AB+CDE+*F+

)

AB+CDE+*F+

*

Evaluation of Arithmetic Expressions
(1) Push the operands into the stack until an operator is reached
(2) Pop the top two operands from the stack, compute the result and also push the result

back into the stack.

(3) Continue this process until there are no more operators in the RPN and the final result

is in the stack.

The following numerical example may clarify this procedure. Consider the arithmetic expression
(3 * 4) + (5 * 6)

In reverse Polish notation, it is expressed as
34 * 56 * +

Instruction Formats:

A computer will usually have a variety of instruction code formats. It is the function of

the control unit within the CPU to interpret each instruction code and provide the necessary

control functions needed to process the instruction.

The bits of the instruction are divided into groups called fields. The most common fields

found in instruction formats are:

1. An operation code field that specifies the operation to be performed.
2. An address field that designates a memory address or a processor register.
3. A mode field that specifies the way the operand or the effective address is determined.

Other special fields are sometimes employed under certain circumstances, as for

example a field that gives the number of shifts in a shift-type instruction.

 The operation code field of an instruction is a group of bits that define various

Page 17

processor operations, such as add, subtract, complement, and shift.

Page 18

 The bits that define the mode field of an instruction code specify a variety of

alternatives for choosing the operands from the given address.

In this section we are concerned with the address field of an instruction format and consider

the effect of including multiple address fields in an instruction.

Operations specified by computer instructions are executed on some data stored in

memory or processor registers. Operands residing in memory are specified by their memory

address. Operands residing in processor registers are specified with a register address. A

register address is a binary number of k bits that defines one of 2kregisters in the CPU.

Computers may have instructions of several different lengths containing varying

number of addresses. The number of address fields in the instruction format of a computer

depends on the internal organization of its registers. Most computers fall into one of three

types of CPU organizations:

1. Single accumulator organization.

2. General register organization.
3. Stack organization.

1. An accumulator-type organization:
All operations are performed with an implied accumulator register. The instruction format in

this type of computer uses one address field. For example, the instruction that specifies an

arithmetic addition is defined by an assembly language instruction as:

ADD X
where X is the address of the operand. The ADD instruction in this case results in the operation

AC AC + M[X]. AC is the accumulator register and M [X] symbolizes the memory word

located at address X.

2. A general register type of organization:
The instruction format in this type of computer needs three register address fields. Thus the

instruction for an arithmetic addition may be written in an assembly language as

ADD R1 , R2 , R3
to denote the operation R 1 R2 + R 3 . The number o f address fields in the instruction can

be reduced from three to two if the destination register is the same as one of the source registers.

Thus the instruction

ADD R1 , R2
would denote the operation R1 R1 + R2. Only register addresses for R1 and R2 need be
specified in this instruction.

General register-type computers employ two or three address fields in their instruction format.

Each address field may specify a processor register or a memory word. An instruction

symbolized by

ADD R1 , X

would specify the operation R1 R1 + M[X]. It has two address fields, one for register R1

and the other for the memory address X.

3. A stack organization:
Computers with stack organization would have PUSH and POP instructions which require an

address field. Thus the instruction

PUSH X
will push the word at address X to the top of the stack. The stack pointer is updated

Page 19

automatically. Operation-type instructions do not need an address field in stack-organized

computers. This is because the operation is performed on the two items that are on top of the

stack. The instruction

ADD

Page 20

in a stack computer consists of an operation code only with no address field. This operation has

the effect of popping the two top numbers from the stack, adding the numbers, and pushing the

sum into the stack. There is no need to specify operands with an address field since all

operands are implied to be in the stack.

 To illustrate the influence of the number of addresses on computer programs, we will
evaluate the arithmetic statement

X = (A + B) • (C + D)
using zero, one, two, or three address instructions. We will use the symbols ADD, SUB, MUL,

and DIV for the four arithmetic operations; MOV for the transfer-type operation; and LOAD and

STORE for transfers to and from memory and AC register. We will assume that the operands

are in memory addresses A, B, C, and D, and the result must be stored in memory at address

X.

Three-Address Instructions:

Two-Address Instructions:

One-Address Instructions:

Zero-Address Instructions:

RISC Instructions:

Page 21

Addressing Modes:

The operation field of an instruction specifies the operation to be performed. This operation

must be executed on some data stored in computer registers or memory words. The way the

operands are chosen during program execution is dependent on the addressing mode of the

instruction. The addressing mode specifies a rule for interpreting or modifying the address

field of the instruction before the operand is actually referenced.

In simple terms, Addressing mode is the way in which the location of an operand can be

specified in an instruction. It generates an effective address (the actual address of the
operand).

Instruction format with mode field

Types of Addressing Modes:

1. Implied Mode
2. Immediate Mode
3. Register Mode
4. Register Indirect Mode:
5. Autoincrement or Autodecrement Mode
6. Direct Address Mode
7. Indirect Address Mode
8. Relative Address Mode
9. Indexed Addressing Mode
10. Base Register Addressing Mode

There are two modes that need no address field at all. These are the implied

and immediate modes.

1. Implied Mode: In this mode the operands are specified implicitly in the definition

ofthe instruction.

For example, the instruction ”complement accumulator (CMA)” is an implied-mode

instruction because the operand in the accumulator register is implied in the definition

of the instruction. In fact, all register reference instructions that use an accumulator

are implied-mode instructions. Zero-address instructions in a stack-organized

computer are implied-mode instructions since the operands are implied to be on top of the

stack.

2. Immediate Mode: In this mode the operand is specified in the instruction itself. In other

words, an immediate-mode instruction has an operand field rather than an address

field. The operand field contains the actual operand to be used in conjunction with the

operation specified in the instruction.

EX: LDAC #34H
LDAC loads data from memory to

Page 22

accumulator. Therefore, AC=00110100.

When the address field specifies a processor register, the instruction is

said to be in the register mode.

Page 23

3. Register Mode: In this mode the operands are in registers that reside within the CPU.

The particular register is selected from a register field in the instruction.

4. Register Indirect Mode: In this mode the instruction specifies a register in the CPU

whose contents give the address of the operand in memory. In other words, the selected

register contains the address of the operand rather than the operand itself.

EX: LDAC (R1)

If R1cotains the address of an operand in the memory, for example: address of

an operand is 2000 which contains a value 350. Result: 350 is stored in the AC.

5. Autoincrement Mode: This is similar to the register indirect mode except that the register

is incremented or decremented after (or before) its value is used to access memory. The

effective address of the operand is the contents of a register specified in the instruction.

After accessing the operand, the contents of the register are automatically incremented

to the next value.

Page 24

6. Autodecrement Mode

The effective address of the operand is the contents of a register specified in the

instruction. Before accessing the operand, the contents of this register are automatically

decremented and then the value is accessed.

Sometimes the value given in the address field is the address of the operand, but

sometimes it is just an address from which the address of the operand is calculated.

7. Direct Address Mode: In this mode the effective address is equal to the address part of the

instruction. The operand resides in memory and its address is given directly by the

address field of the instruction. In a branch-type instruction the address field specifies

the actual branch address.

Ex: LDAC 5000

This instruction reads the operand from the Memory location 5000. if the memory

location 5000 contains a value 250, then it will be stored in AC.

8. Indirect Address Mode: In this mode the address field of the instruction gives the

address where the effective address is stored in memory. Control fetches the instruction

from memory and uses its address part to access memory again to read the effective

Page 25

address.

Page 26

EX: ADD (A), R1

 If A is address of EA. For example: address of A is 1000 which contains 3000, 3000 is

an address of an operand (EA).

 This instruction reads an operand from the location address 3000 and adds its

contents to R1.

A few addressing modes require that the address field of the instruction be added to the

content of a specific register in the CPU. The effective address in these modes is obtained

from the following computation:

 effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or

a base register. In either case we have a different addressing mode which is used for a

different application.

9. Relative Address Mode:

In this mode the content of the program counter is added to the address part of

the instruction in order to obtain the effective address.

EX:

PC= address of next instruction , i.e., 1. The address given in the instruction is 5 Then

EA= 5 + 1= 6 which contains a value 12. Finally AC contains 12.

10. Indexed Addressing Mode:

In this mode the content of an index register is added to the address part of the

instruction to obtain the effective address.

Page 27

Ex: LDAC A(XR)

Assume XR=100, A=500

This instruction reads the operand from the effective address

(600) i.e., EA= XR contents (index register) + 500

= 100 + 500=600

If memory location at 600 contains a value 55 (assume), This 55 will be stored in AC.

11. Base Register Addressing Mode:

In this mode the content of a base register is added to the address part of the

instruction to obtain the effective address.

Ex: LDAC A(R)

Assume R=1000,

A=50

This instruction reads the operand from the effective address (1050) i.e.,

EA= R contents (Base register) + 50

= 1000 + 50=1050

If memory location at 1050 contains a value 255 (assume), this 255 will be stored in

AC.

Numerical Example:

Page 28

Table (4): Tabular list of some addressing modes of numerical example.

Data Transfer and Manipulation:

Computers provide an extensive set of instructions to give the user the flexibility to carry out

various computational tasks. The instruction set of different computers differ from each other

mostly in the way the operands are determined from the address and mode fields.

Most computer instructions can be classified into three categories:

1. Data transfer instructions

2. Data manipulation instructions
3. Program control instructions

Data transfer instructions cause transfer of data from one location to another without

changing the binary information content.

Data manipulation instructions are those that perform arithmetic, logic, and shift operations.

Program control instructions provide decision-making capabilities and change the path taken

by the program when executed in the computer.

The instruction set of a particular computer determines the register transfer operations and

control decisions that are available to the user.

1. Data transfer instructions

Data transfer instructions move data from one place in the computer to another without

changing the data content. The most common transfers are between memory and processor

registers, between processor registers and input or output, and between the processor registers

themselves. Table (5) gives a list of eight data transfer instructions used in many computers.

Page 29

Table (5): Data Transfer Instructions

 The load instruction has been used mostly to designate a transfer from memory to a

processor register, usually an accumulator.

 The store instruction designates a transfer from a processor register into memory.

 The move instruction has been used in computers with multiple CPU registers to

designate a transfer from one register to another. It has also been used for data

transfers between CPU registers and memory or between two memory words.

 The exchange instruction swaps information between two registers or a register and a

memory word.

 The input and output instructions transfer data among processor registers and input or

output terminals.

 The push and pop instructions transfer data between processor registers and a memory

stack.

2. Data Manipulation Instructions

Data manipulation instructions perform operations on data and provide the

computational capabilities for the computer. The data manipulation instructions in a

typical computer are usually divided into three basic types:

i. Arithmetic instructions
ii. Logical and bit manipulation instructions
iii. Shift instructions

i. Arithmetic instructions

Page 30

Table (6): Arithmetic Instructions

Page 31

 A special carry flip-flop is used to store the carry from an operation. The instruction

"add with carry" performs the addition on two operands plus the value of the carry from

the previous computation.

 Similarly, the "subtract with borrow" instruction subtracts two words and a borrow

which may have resulted from a previous subtract operation.

 The negate instruction forms the 2' s complement of a number.

ii. Logical and Bit Manipulation Instructions

Logical instructions perform binary operations on strings of bits stored in registers.

They are useful for manipulating individual bits or a group of bits that represent

binary-coded information. The logical instructions consider each bit of the operand

separately and treat it as a Boolean variable.

Table (7): Logic and Bit Manipulation Instructions

iii. Shift Instructions

Instructions to shift the content of an operand are quite useful and are often provided in

several variations. Shifts are operations in which the bits of a word are moved to the left

or right. The bit shifted in at the end of the word determines the type of shift used. Shift

instructions may specify logical shifts, arithmetic shifts, or rotate-type operations. In

either case the shift may be to the right or to the left.

Table (8): Shift Instructions

The rotate through carry instruction treats a carry bit as an extension of the register

Page 32

whose word is being rotated. Thus a rotate-left through carry instruction transfers the

carry bit into the rightmost bit position of the register, transfers the leftmost bit

position into the carry and at the same time, and shifts the entire register to the left.

Page 33

A possible instruction code format of a shift instruction may include five fields as follows:

OP REG TYPE RL COUNT

OP- operation code field

REG- a register address that specifies the location of the

operand TYPE- a 2-bit field specifying the four different types

of shifts RL- a 1-bit field specifying a shift right or left

COUNT- a k-bit field specifying up to 2k - 1 shifts

Program Control:
After the execution of a data transfer or data manipulation instruction,

control returns to the fetch cycle with the program counter containing the address of the

instruction next in sequence.

On the other hand, a program control type of instruction, when executed,

may change the address value in the program counter and cause the flow of control to be

altered. In other words, program control instructions specify conditions for altering the

content of the program counter, while data transfer and manipulation instructions

specify conditions for data-processing operations.

The change in value of the program counter as a result of the execution of a

program control instruction causes a break in the sequence of instruction execution.

This is an important feature in digital computers, as it provides control over the flow of

program execution and a capability for branching to different program segments.

Table (9) : Program Control Instructions

Status Bit Conditions:

It is sometimes convenient to supplement the ALU circuit in the CPU with a

status register where status bit conditions can be stored for further analysis. Status

bits are also called condition-code bits or flag bits. Figure (6) shows the block diagram

of an 8-bit ALU with a 4-bit status register. The four status bits are symbolized by C.

S, Z, and V. The bits are set or cleared as a result of an operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.

2. Bit S (sign) is set to 1 if the highest-order bit F7 is 1. It is set to 0 if the bit is 0.

3. Bit Z (zero) is set to 1 if the output of the ALU contains all 0's. It is cleared to 0

Page 34

otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output

is not zero.

Page 35

4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1,

and cleared to 0 otherwise. This is the condition for an overflow when negative

numbers are in 2's complement. For the 8-bit ALU, V = 1 if the output is greater

than + 127 or less than – 128.

Figure (6): Status register bits

Conditional Branch Instructions:

To change the flow of execution in the program we use some kind of branching

instructions which are depending on the some conditions result.

Each mnemonic is constructed with the letter B (for branch) and an abbreviation of the

condition name. When the opposite condition state is used, the letter N (for no) is inserted to

define the 0 state. Thus BC is Branch on Carry, and BNC is Branch on No Carry.

If the stated condition is true, program control is transferred to the address

specified by the instruction. If not, control continues with the instruction that follows. The

conditional instructions can be associated also with the jump, skip, call, or return type of

program control instructions.

Page 36

Table (10): Conditional Branch Instructions

Example: Consider an 8-bit ALU as shown in Figure (6). The largest unsigned number that

can be accommodated in 8 bits is 255. The range of signed numbers is between + 127 and -

128. Let A = 11110000 and B = 00010100. To perform A - B, the ALU takes the 2's

complement of B and adds it to A.

The compare instruction updates the status bits as shown. C = 1 because there is a carry out of

the last stage. S = 1 because the leftmost bit is 1. V = 0 because the last two carries are both

equal to 1, and Z = 0 because the result is not equal to 0.

Subroutine Call and Return:

A subroutine is a self-contained sequence of instructions that performs a given

computational task. During the execution of a program, a subroutine may be called to perform

its function many times at various points in the main program. Each time a subroutine is

called, a branch is executed to the beginning of the subroutine to start executing its set of

Page 37

instructions. After the subroutine has been executed, a branch is made back to the main

program.

Page 38

The instruction that transfers program control to a subroutine is known by different names.

The most common names used are call subroutine, jump to subroutine, branch to subroutine, or

branch and save address.

A call subroutine instruction consists of an operation code together with an address that

specifies the beginning of the subroutine. The instruction is executed by performing two

operations:

(1) The address of the next instruction available in the program counter (the return

address) is stored in a temporary location so the subroutine knows where to return, and

(2) Control is transferred to the beginning of the subroutine. The last instruction of every

subroutine, commonly called return from subroutine, transfers the return address from

the temporary location into the program counter. This results in a transfer of program

control to the instruction whose address was originally stored in the temporary location.

The most efficient way is to store the return address in a memory stack. The advantage of

using a stack for the return address is that when a succession of subroutines is called, the

sequential return addresses can be pushed into the stack. The return from subroutine

instruction causes the stack to pop and the contents of the top of the stack are transferred to

the program counter. In this way, the return is always to the program that last called a

subroutine. A subroutine call is implemented with the following microoperations:

If another subroutine is called by the current subroutine, the new return address is pushed

into the stack, and so on. The instruction that returns from the last subroutine is

implemented by the microoperations:

By using a subroutine stack, all return addresses are automatically stored by the hardware

in one unit. The programmer does not have to be concerned or remember where the return

address was stored.

 A recursive subroutine is a subroutine that calls itself.

Page 39

Program interrupt:

Program interrupt refers to the transfer of program control from a currently running program

to another service program as a result of an external or internal generated request. Control

returns to the original program after the service program is executed.

The interrupt procedure is, in principle, quite similar to a subroutine call except for three

variations:

(1) The interrupt is usually initiated by an internal or external signal rather than from the

execution of an instruction (except for software interrupt as explained later);

(2) The address of the interrupt service program is determined by the hardware rather than

from the address field of an instruction; and

(3) An interrupt procedure usually stores all the information necessary to define the state

of the CPU rather than storing only the program counter.

The state of the CPU at the end of the execute cycle (when the interrupt is recognized) is

determined from:

1. The content of the program counter
2. The content of all processor registers
3. The content of certain status conditions

The collection of all status bit conditions in the CPU is sometimes called a program

status word or PSW. The PSW is stored in a separate hardware register and contains the status

information that characterizes the state of the CPU

The last instruction in the service program is a return from interrupt

instruction. When this instruction is executed, the stack is popped to retrieve the old PSW and

the return address. The PSW is transferred to the status register and the return address to the

program counter. Thus the CPU state is restored and the original program can continue

executing.

There are three major types of interrupts that cause a break in the normal execution of a

program. They can be classified as:

1. External interrupts

2. Internal interrupts

3. Software interrupts

External interrupts come from input-output (l/0) devices, from a timing device, from a circuit

monitoring the power supply, or from any other external source. Examples that cause external

interrupts are l/0 device requesting transfer of data, l/0 device finished transfer of data etc.

Internal interrupts arise from illegal or erroneous use of an instruction or data. Internal

interrupts are also called traps . Examples of interrupts caused by internal error conditions are

register overflow, attempt to divide by zero, an invalid operation code, stack overflow, and

protection violation.

Page 40

External and internal interrupts are initiated from signals that occur in the hardware of the

CPU. A software interrupt is initiated by executing an instruction. Software interrupt is a

special call instruction that behaves like an interrupt rather than a subroutine call. It can be

used by the programmer to initiate an interrupt procedure at any desired point in the program.

The most

Page 41

common use of software interrupt is associated with a supervisor call instruction. This

instruction provides means for switching from a CPU user mode to the supervisor mode.

Reduced Instruction Set Computer (RISC):
 An important aspect of computer architecture is the design of the instruction set for the

processor.

 Early computers had small and simple instruction sets, forced mainly by the need to

minimize the hardware used to implement them .

 As digital hardware became cheaper with the advent of integrated circuits, computer

instructions tended to increase both in number and complexity. Many computers have

instruction sets that include more than 100 and sometimes even more than 200

instructions. These computers also employ a variety of data types and a large number of

addressing modes.

A computer with a large number of instructions is classified as a complex instruction set

computer, abbreviated CISC.

In the early 1980s, a number of computer designers recommended that computers

use fewer instructions with simple constructs so they can be executed much faster within

the CPU without having to use memory as often. This type of computer is classified as a

reduced instruction set computer or RISC.

CISC Characteristics

The major characteristics of CISC architecture are:

1. A large number of instructions-typically from 100 to 250 instructions

2. Some instructions that perform specialized tasks and are used infrequently

3. A large variety of addressing modes-typically from 5 to 20 different modes

4. Variable-length instruction formats

5. Instructions that manipulate operands in memory

RISC Characteristics

The concept of RISC architecture involves an attempt to reduce execution time by

simplifying the instruction set of the computer The major characteristics of RISC

architecture are:

1. Relatively few instructions

2. Relatively few addressing modes

3. Memory access limited to load and store instructions

4. All operations done within the registers of the CPU

5. Fixed-length, easily decoded instruction format

6. Single-cycle instruction execution

7. Hardwired rather than microprogrammed

control Other characteristics attributed to RISC architecture

Page 42

are:

1. A relatively large number of registers in the processor unit

2. Use of overlapped register windows to speed-up procedure call and return

3. Efficient instruction pipeline

4. Compiler support for efficient translation of high-level language programs

into machine language .

Page 43

Overlapped Register Windows

Procedure call and return occurs quite often in high-level programming languages. When

translated into machine language, a procedure call produces a sequence of instructions

that save register values, pass parameters needed for the procedure, and then calls a

subroutine to execute the body of the procedure. After a procedure return, the program

restores the old register values, passes results to the calling program, and returns from the

subroutine. Saving and restoring registers and passing of parameters and results involve

time consuming operations.

A characteristic of some RISC processors is their use of overlapped register

windows to provide the passing of parameters and avoid the need for saving and restoring

register values.

Berkeley RISC I

 One of the first projects intended to show the advantages of RISC architecture was

conducted at the University of California, Berkeley.

 The Berkeley RISC I is a 32-bit integrated circuit CPU. It supports 32-bit addresses and

either 8-, 16-, or 32-bit data. It has a 32-bit instruction format and a total of 31

instructions.

 There are three basic addressing modes: register addressing, immediate operand, and

relative to PC addressing for branch instructions. It has a register file of 138 registers

arranged into 10 global registers and 8 windows of 32 registers in each.

1

UNIT – 5
Memory Organization: Memory Hierarchy, Main Memory –RAM And ROM Chips, Memory

Address map, Auxiliary memory-magnetic Disks, Magnetic tapes, Associate Memory,-Hardware

Organization, Match Logic, Cache Memory –Associative Mapping , Direct Mapping, Set

associative mapping ,Writing in to cache and cache Initialization , Cache Coherence ,Virtual

memory-Address Space and memory Space ,Address mapping using pages, Associative memory

page table ,page Replacement .

Memory Hierarchy

The total memory capacity of a computer can be visualized by hierarchy of components.

The memory hierarchy system consists of all storage devices contained in a computer system

from the slow Auxiliary Memory to fast Main Memory and to smaller Cache memory.

Auxillary memory access time is generally 1000 times that of the main memory, hence it is

at the bottom of the hierarchy.

The main memory occupies the central position because it is equipped to communicate directly

with the CPU and with auxiliary memory devices through Input/output processor (I/O).

When the program not residing in main memory is needed by the CPU, they are brought in

from auxiliary memory. Programs not currently needed in main memory are transferred

into auxiliary memory to provide space in main memory for other programs that are

currently in use.

The cache memory is used to store program data which is currently being executed in the

CPU. Approximate access time ratio between cache memory and main memory is about 1 to

7~10

2

Memory Access Methods

Each memory type, is a collection of numerous memory locations. To access data from any

memory, first it must be located and then the data is read from the memory location. Following

are the methods to access information from memory locations:

1. Random Access: Main memories are random access memories, in which each memory

location has a unique address. Using this unique address any memory location can be

reached in the same amount of time in any order.

2. Sequential Access: This methods allows memory access in a sequence or in order.

3. Direct Access: In this mode, information is stored in tracks, with each track having a

separate read/write head.

Main Memory

The memory unit that communicates directly within the CPU, Auxillary memory and Cache

memory, is called main memory. It is the central storage unit of the computer system. It is a large

and fast memory used to store data during computer operations. Main memory is made up

of RAM and ROM, with RAM integrated circuit chips holing the major share.

 RAM: Random Access Memory

o DRAM: Dynamic RAM, is made of capacitors and transistors, and must be

refreshed every 10~100 ms. It is slower and cheaper than SRAM.

o SRAM: Static RAM, has a six transistor circuit in each cell and retains data,

3

until powered off.

4

o NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example:

Flash memory.

 ROM: Read Only Memory, is non-volatile and is more like a permanent storage for

information. It also stores the bootstrap loader program, to load and start the operating

system when computer is turned on. PROM(Programmable ROM), EPROM(Erasable

PROM)

and EEPROM(Electrically Erasable PROM) are some commonly used ROMs.

Memory Address map:

 The addressing of memory can establish by means of a table that specifies the memory

address assigned to each chip.

 The table, called a memory address map, is a pictorial representation of assigned

address space for each chip in the system, shown in the table.

 To demonstrate with a particular example, assume that a computer system needs 512

bytes of RAM and 512 bytes of ROM.

 The RAM and ROM chips to be used specified in figures.

 The component column specifies whether a RAM or a ROM chip used.

 Moreover, The hexadecimal address column assigns a range of hexadecimal equivalent

addresses for each chip.

 The address bus lines listed in the third column.
 Although there 16 lines in the address bus, the table shows only 10 lines because the

other 6 not used in this example and assumed to be zero.

 The small x’s under the address bus lines designate those lines that must connect to

the

address inputs in each chip.

 Moreover, The RAM chips have 128 bytes and need seven address lines. The ROM chip has

512 bytes and needs 9 address lines.

 The x’s always assigned to the low-order bus lines: lines 1 through 7 for the RAM. And

lines 1 through 9 for the ROM.

 It is now necessary to distinguish between four RAM chips by assigning to each a

different address. For this particular example, we choose bus lines 8 and 9 to represent four

distinct binary combinations.

 Also, The table clearly shows that the nine low-order bus lines constitute a memory space

for RAM equal to 29 = 512 bytes.

5

 The distinction between a RAM and ROM address done with another bus line. Here

we choose line 10 for this purpose.

 When line 10 0, the CPU selects a RAM, and when this line equal to 1, it selects the ROM.

6

Auxiliary Memory

Devices that provide backup storage are called auxiliary memory. For example:

Magnetic disks and tapes are commonly used auxiliary devices. Other devices used as

auxiliary memory are magnetic drums, magnetic bubble memory and optical disks.

It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Cache Memory

The data or contents of the main memory that are used again and again by CPU, are

stored in the cache memory so that we can easily access that data in shorter time.

Whenever the CPU needs to access memory, it first checks the cache memory. If the data is not

found in cache memory then the CPU moves onto the main memory. It also transfers block of

recent data into the cache and keeps on deleting the old data in cache to accomodate the new one.

Hit Ratio

The performance of cache memory is measured in terms of a quantity called hit ratio.

When the CPU refers to memory and finds the word in cache it is said to produce a hit. If the

word is not found in cache, it is in main memory then it counts as a miss.

The ratio of the number of hits to the total CPU references to memory is called hit

ratio. Hit Ratio = Hit/(Hit + Miss)

Associative Memory

It is also known as content addressable memory (CAM). It is a memory chip in which

each bit position can be compared. In this the content is compared in each bit cell which allows

very fast table lookup. Since the entire chip can be compared, contents are randomly stored

without considering addressing scheme. These chips have less storage capacity than regular

memory chips.

Memory Mapping and Concept of Virtual Memory

The transformation of data from main memory to cache memory is called mapping. There are

3 main types of mapping:

 Associative Mapping

 Direct Mapping

 Set Associative Mapping

Associative Mapping

The associative memory stores both address and data. The address value of 15 bits is 5

7

digit octal numbers and data is of 12 bits word in 4 digit octal number. A CPU address of 15

bits is placed in argument register and the associative memory is searched for matching address.

8

Direct Mapping

The CPU address of 15 bits is divided into 2 fields. In this the 9 least significant bits

constitute the index field and the remaining 6 bits constitute the tag field. The number of bits in

index field is equal to the number of address bits required to access cache memory.

Set Associative Mapping

The disadvantage of direct mapping is that two words with same index address can't reside in

cache memory at the same time. This problem can be overcome by set associative mapping.

In this we can store two or more words of memory under the same index address. Each data word

is stored together with its tag and this forms a set.

9

Replacement Algorithms

Data is continuously replaced with new data in the cache memory using replacement

algorithms.

Following are the 2 replacement algorithms used:

 FIFO - First in First out. Oldest item is replaced with the latest item.

 LRU - Least Recently Used. Item which is least recently used by CPU is removed.

Writing in to cache and cache Initialization:

The benefit of write-through to main memory is that it simplifies the design of the

computer system. With write-through, the main memory always has an up-to-date copy of the

line. So when a read is done, main memory can always reply with the requested data.

If write-back is used, sometimes the up-to-date data is in a processor cache, and sometimes it is

in main memory. If the data is in a processor cache, then that processor must stop main

memory from replying to the read request, because the main memory might have a stale copy

of the data. This is more complicated than write-through.

Also, write-through can simplify the cache coherency protocol because it doesn't need

the Modifystate. The Modify state records that the cache must write back the cache line before it

invalidates or evicts the line. In write-through a cache line can always be invalidated without

writing back since memory already has an up-to-date copy of the line.

Cache Coherence:
In a shared memory multiprocessor with a separate cache memory for each processor , it is

possible to have many copies of any one instruction operand : one copy in the main memory

and one in each cache memory. When one copy of an operand is changed, the other copies of the

operand must be changed also. Cache coherence is the discipline that ensures that changes in the

values of shared operands are propagated throughout the system in a timely fashion.

Virtual Memory

10

Virtual memory is the separation of logical memory from physical memory. This separation

provides large virtual memory for programmers when only small physical memory is available.

11

Virtual memory is used to give programmers the illusion that they have a very large memory even

though the computer has a small main memory. It makes the task of programming easier because

the programmer no longer needs to worry about the amount of physical memory available.

Address mapping using pages:

 The table implementation of the address mapping is simplified if the information in

the address space. And the memory space is each divided into groups of fixed size.

 Moreover, The physical memory is broken down into groups of equal size called

blocks, which may range from 64 to 4096 words each.

 The term page refers to groups of address space of the same size.
 Also, Consider a computer with an address space of 8K and a memory space of 4K.

 If we split each into groups of 1K words we obtain eight pages and four blocks as shown

in the figure.

 At any given time, up to four pages of address space may reside in main memory in

any one of the four blocks.

12

Associative memory page table:
The implementation of the page table is vital to the efficiency of the virtual memory

technique, for each memory reference must also include a reference to the page table. The fastest

solution is a set of dedicated registers to hold the page table but this method is impractical for

large page tables because of the expense. But keeping the page table in main memory could cause

intolerable delays because even only one memory access for the page table involves a slowdown of

100 percent and large page tables can require more than one memory access. The solution is to

augment the page table with special high-speed memory made up of associative registers or

translation look aside buffers (TLBs) which are called ASSOCIATIVE MEMORY.

Page replacement

The advantage of virtual memory is that processes can be using more memory than exists

in the machine; when memory is accessed that is not present (a page fault), it must be paged in

(sometimes referred to as being "swapped in", although some people reserve "swapped in to refer to

bringing in an entire address space).

Swapping in pages is very expensive (it requires using the disk), so we'd like to avoid page

faults as much as possible. The algorithm that we use to choose which pages to evict to make

space for the new page can have a large impact on the number of page faults that occur.

13

UNIT – 5

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data

transfer Modes of Transfer, Priority Interrupt Direct memory Access, Input –Output Processor

(IOP) Pipeline And Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline,

Instruction Pipeline, Dependencies, Vector Processing.

Introduction:

The I/O subsystem of a computer provides an efficient mode of communication between the

central system and the outside environment. It handles all the input-output operations of the

computer system.

Peripheral Devices

Input or output devices that are connected to computer are called peripheral devices. These devices

are designed to read information into or out of the memory unit upon command from the CPU

and are considered to be the part of computer system. These devices are also called peripherals.

For example: Keyboards, display units and printers are common peripheral

devices. There are three types of peripherals:

1. Input peripherals : Allows user input, from the outside world to the computer. Example:

Keyboard, Mouse etc.

2. Output peripherals: Allows information output, from the computer to the outside

world. Example: Printer, Monitor etc

3. Input-Output peripherals: Allows both input(from outised world to computer) as well as,

output(from computer to the outside world). Example: Touch screen etc.

Interfaces

Interface is a shared boundary btween two separate components of the computer system which can be

used to attach two or more components to the system for communication purposes.

There are two types of interface:

1. CPU Inteface

2. I/O Interface

14

Let's understand the I/O Interface in details,

15

Input-Output Interface

Peripherals connected to a computer need special communication links for interfacing with CPU.

In computer system, there are special hardware components between the CPU and peripherals to

control or manage the input-output transfers. These components are called input-output interface

units because they provide communication links between processor bus and peripherals. They

provide a method for transferring information between internal system and input-output devices.

Asynchronous Data Transfer

We know that, the internal operations in individual unit of digital system are synchronized by

means of clock pulse, means clock pulse is given to all registers within a unit, and all data

transfer among internal registers occur simultaneously during occurrence of clock pulse.Now,

suppose any two units of digital system are designed independently such as CPU and I/O

interface.

And if the registers in the interface(I/O interface) share a common clock with CPU registers, then

transfer between the two units is said to be synchronous.But in most cases, the internal timing

in each unit is independent from each other in such a way that each uses its own private clock for

its internal registers.In that case, the two units are said to be asynchronous to each other, and if

data transfer occur between them this data transfer is said to be Asynchronous Data Transfer.

But, the Asynchronous Data Transfer between two independent units requires that control

signals be transmitted between the communicating units so that the time can be indicated at

which they send data.

This asynchronous way of data transfer can be achieved by two methods:

1. One way is by means of strobe pulse which is supplied by one of the units to other

unit.When transfer has to occur.This method is known as “Strobe Control”.

2. Another method commonly used is to accompany each data item being

transferred with a control signal that indicates the presence of data in the bus.The unit

receiving the data item responds with another signal to acknowledge receipt of the

data.This method of data transfer between two independent units is said to be

“Handshaking”.

The strobe pulse and handshaking method of asynchronous data transfer are not restricted to

I/O transfer.In fact, they are used extensively on numerous occasion requiring transfer of data

between two independent units.So, here we consider the transmitting unit as source and

receiving unit as destination.

As an example: The CPU, is the source during an output or write transfer and is the destination

unit during input or read transfer.

And thus, the sequence of control during an asynchronous transfer depends on whether the

transfer is initiated by the source or by the destination.

So, while discussing each way of data transfer asynchronously we see the sequence of control in

16

both terms when it is initiated by source or when it is initiated by destination.In this way, each

way of data transfer, can be further divided into parts, source initiated and destination initiated.

We can also specify, asynchronous transfer between two independent units by means of a

timing diagram that shows the timing relationship that exists between the control and the

data buses.

17

Now, we will discuss each method of asynchronous data transfer in detail one by one.

1. Strobe Control:

The Strobe Control method of asynchronous data transfer employs a single control line to

time each transfer .This control line is also known as strobe and it may be achieved either by

source or

destination, depending on which initiate transfer.

Source initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by source unit is shown in figure

below:

In block diagram we see that strobe is initiated by source, and as shown in timing

diagram, the source unit first places the data on the data bus.After a brief delay to ensure that the

data settle to a steady value, the source activates a strobe pulse.The information on data bus and

strobe control signal remain in the active state for a sufficient period of time to allow the

destination unit to receive the data.Actually, the destination unit, uses a falling edge of strobe

control to transfer the contents of data bus to one of its internal registers.The source removes the

data from the data bus after it disables its strobe pulse.New valid data will be available only after

the strobe is enabled again.

Destination-initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by destination is shown in figure below:

18

In block diagram, we see that, the strobe initiated by destination, and as shown in timing

diagram, the destination unit first activates the strobe pulse, informing the source to provide the

data.The source unit responds by placing the requested binary information on the data bus.The

data must be valid and remain in the bus long enough for the destination unit to accept it.The

falling edge of strobe pulse can be used again to trigger a destination register.The

destination unit then disables the strobe.And source removes the data from data bus after a per

determine time interval.

Now, actually in computer, in the first case means in strobe initiated by source - the strobe

may be a memory-write control signal from the CPU to a memory unit.The source, CPU, places

the word on the data bus and informs the memory unit, which is the destination, that this is a

write operation.

And in the second case i.e, in the strobe initiated by destination - the strobe may be a memory

read control from the CPU to a memory unit.The destination, the CPU, initiates the read operation

to inform the memory, which is a source unit, to place selected word into the data bus.

2. Handshaking:

The disadvantage of strobe method is that source unit that initiates the transfer has no

way of knowing whether the destination has actually received the data that was placed

in the

bus.Similarly, a destination unit that initiates the transfer has no way of knowing

whether the source unit, has actually placed data on the bus.

This problem can be solved by handshaking method.

Hand shaking method introduce a second control signal line that provides a replay to the unit

that initiates the transfer.

In it, one control line is in the same direction as the data flow in the bus from the source to

destination.It is used by source unit to inform the destination unit whether there are valid

data

in the bus.The other control line is in the other direction from destination to the source.It is

19

used by the destination unit to inform the source whether it can accept data.And

in it also, sequence of control depends on unit that initiate transfer.Means sequence of control

depends whether transfer is initiated by source and destination.Sequence of control in both

of them are described below:

20

Source initiated Handshaking:

The source initiated transfer using handshaking lines is shown in figure below:

In its block diagram, we se that two handshaking lines are "data valid", which is generated

by the source unit, and "data accepted", generated by the

 destination unit.

The timing diagram shows the timing relationship of exchange of signals between the two

units.Means as shown in its timing diagram, the source initiates a transfer by placing data on

the bus and enabling its data valid signal.The data accepted signal is then activated by

destination unit after it accepts the data from the bus.The source unit then disable its data valid

signal which invalidates the data on the bus.After this, the destination unit disables its data

accepted signal and the system goes into initial state.The source unit does not send the next data

item until after the destination unit shows its readiness to accept new data by

disabling the data accepted signal.

This sequence of events described in its sequence diagram, which shows the above sequence

in which the system is present, at any given time.

Destination initiated handshaking:

The destination initiated transfer using handshaking lines is shown in figure below:

21

In its block diagram, we see that the two handshaking lines are "data valid", generated by the

source unit, and "ready for data" generated by destination unit.Note that the name of signal

data accepted generated by destination unit has been changed to ready for data to reflect its new

meaning.

In it, transfer is initiated by destination, so source unit does not place data on data bus until

it receives ready for data signal from destination unit.After that, hand shaking process is some

as that of source initiated.

The sequence of event in it are shown in its sequence diagram and timing relationship

between signals is shown in its timing diagram.

Thus, here we can say that, sequence of events in both cases would be identical.If we

consider ready for data signal as the complement of data accept.Means, the only difference

between source and destination initiated transfer is in their choice of initial state.

Modes of I/O Data Transfer
Data transfer between the central unit and I/O devices can be handled in generally three types of

modes which are given below:

1. Programmed I/O
2. Interrupt Initiated I/O
3. Direct Memory Access

22

Programmed I/O

Programmed I/O instructions are the result of I/O instructions written in computer program.

Each data item transfer is initiated by the instruction in the program.

Usually the program controls data transfer to and from CPU and peripheral. Transferring data

under programmed I/O requires constant monitoring of the peripherals by the CPU.

Interrupt Initiated I/O

In the programmed I/O method the CPU stays in the program loop until the I/O unit indicates

that it is ready for data transfer. This is time consuming process because it keeps the processor busy

needlessly.

This problem can be overcome by using interrupt initiated I/O. In this when the interface determines

that the peripheral is ready for data transfer, it generates an interrupt. After receiving the interrupt

signal, the CPU stops the task which it is processing and service the I/O transfer and then returns

back to its previous processing task.

Direct Memory Access

Removing the CPU from the path and letting the peripheral device manage the memory buses

directly would improve the speed of transfer. This technique is known as DMA.

In this, the interface transfer data to and from the memory through memory bus. A DMA controller

manages to transfer data between peripherals and memory unit.

Many hardware systems use DMA such as disk drive controllers, graphic cards, network cards and

sound cards etc. It is also used for intra chip data transfer in multicore processors. In DMA, CPU

would initiate the transfer, do other operations while the transfer is in progress and receive an

interrupt from the DMA controller when the transfer has been completed.

Priority Interrupt

A priority interrupt is a system which decides the priority at which various devices, which

generates the interrupt signal at the same time, will be serviced by the CPU. The system has authority

to decide which conditions are allowed to interrupt the CPU, while some other interrupt is being

serviced. Generally, devices with high speed transfer such as magnetic disks are given high priority

and slow devices such as keyboards are given low priority.

When two or more devices interrupt the computer simultaneously, the computer services the device with

the higher priority first.

23

DIRECT MEMORY ACCESS

Block of data transfer from high speed devices, Drum, Disk, Tape

CPU bus signals for DMA transfer

Bus request

Bus granted

Block diagram of DMA controller
Address bus

Data bus

Address bus

Data bus

Read

Write

High-impedence

(disabled) when

BG is

enabled

DMA select

Register select

Read

Write

Bus request

Bus grant

DS

RS

RD

Control
logic

BR

BG

Interrupt Interrupt DMA request

 DMA acknowledge to I/O device

* DMA controller - Interface which allows I/O transfer directly

between Memory and Device, freeing CPU for other tasks

* CPU initializes DMA Controller by sending

memory address and the block size(number

of words)

DMA TRANSFER

BR
CPU

BG

ABUS

DBUS

RD

WR

Internal Bus

Address bus
buffers

Control register

Word count register

Address register

Data bus
buffers

WR

Interrupt

BG

BR

RD

CPU
Random-access
memory unit (RAM)

WR Addr Data

Read control

Write control

Data bus

Address bus

RD WR Addr Data

Address
select

RD

DS

RS

BR

BG

WR Addr Data

DMA ack.

DMA
Controller

 DMA request

Interrupt

I/O
Peripheral

device

24

Input/output Processor

An input-output processor (IOP) is a processor with direct memory access capability. In this,

the computer system is divided into a memory unit and number of processors.

Each IOP controls and manage the input-output tasks. The IOP is similar to CPU except that it

handles only the details of I/O processing. The IOP can fetch and execute its own instructions.

These IOP instructions are designed to manage I/O transfers only.

Block Diagram Of I/O Processor:

Below is a block diagram of a computer along with various I/O Processors. The memory unit occupies

the central position and can communicate with each processor.

The CPU processes the data required for solving the computational tasks. The IOP provides a path for

transfer of data between peripherals and memory. The CPU assigns the task of initiating the I/O

program.

The IOP operates independent from CPU and transfer data between peripherals and memory.

The communication between the IOP and the devices is similar to the program control method of

transfer. And the communication with the memory is similar to the direct memory access method.

In large scale computers, each processor is independent of other processors and any processor can

initiate the operation.

The CPU can act as master and the IOP act as slave processor. The CPU assigns the task of initiating

operations but it is the IOP, who executes the instructions, and not the CPU. CPU instructions provide

operations to start an I/O transfer. The IOP asks for CPU through interrupt.

Instructions that are read from memory by an IOP are also called commands to distinguish them

from instructions that are read by CPU. Commands are prepared by programmers and are stored in

memory. Command words make the program for IOP. CPU informs the IOP where to find the

commands in memory.

||''|''||''||''''''|

Code No: R1921056

II B. Tech I Semester Regular Examinations, March - 2021

COMPUTER ORGANIZATION

(Com to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit

All Questions carry Equal Marks

~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 a) Draw and explain Von Neumann Architecture. Explain Moore’s Law. [8M] 

b) Give the major characteristics of RISC and CISC architectures. [7M] 

Or 

2 a) Explain IEEE-754 model for floating point representation. [8M] 

b) Explain about Booth’s multiplication algorithm and solve Multiply 7 and 3. [7M] 

3 a) Explain the I/O instructions and type of I/O instructions. [8M] 

b) Write a program to evaluate the arithmetic statement A=X-Y+C/P+Q using a

stack organized computer with zero address instructions.

[7M] 

Or 

4 a) Explain about computer registers set in detailed. [8M] 

b) Explain indirect address mode and how the effective address is calculated in this

case.

[7M] 

5 a) Write the procedure to mitigate number of bits in micro instructions. [8M] 

b) Explain arithmetic micro operations with examples. [7M] 

Or 

6 a) What is a micro-operation of list and explain the four categories of the most

common micro-operations? 

[8M] 

b) Differentiate the relative addressing and index addressing modes. [7M] 

7 a) Discuss about Cache-mapping functions. [8M] 

b) What is associative memory? Explain with the help of block diagram. Also

mention the situation in which associative memory can be effective utilized.

[7M] 

Or 

8 a) Explain the Direct mapping in cache memory with an example. [8M] 

b) Explain about Direct Memory Access (DMA). [7M] 

9 a) Explain instruction pipeline with neat timing diagram. [8M] 

b) Discuss Flynn’s classification of computer. [7M] 

Or 

10 a) Draw and explain arithmetic pipeline for floating point multiplication. [8M] 

b) Explain about Interconnection network. [7M] 

1 of 1 

R19 SET - 1 



                      ||''|''||''||''''''|

 

Code No: R1921056 

 

II B. Tech I Semester Regular Examinations, March - 2021 

COMPUTER ORGANIZATION 

(Com to CSE, IT) 

Time: 3 hours                                         Max. Marks: 75 
 

Answer any FIVE Questions each Question from each unit 

All Questions carry Equal Marks 

~~~~~~~~~~~~~~~~~~~~~~~~~ 


1 a) Discuss Arithmetic addition and subtraction with signed-2’s complement

representation. [8M]

 b) Is there any alternate of Von-Neumann architecture? If exists than give the basic

idea of them. [7M]

 Or

2 a) Discuss modified Booth algorithm with suitable example. [8M]

 b) Discuss the advantages, disadvantages, and applications of i) Excess – 3 code ii)

Gray Code(Illustrate with one example each) [7M]

3 a) Explain the significance of the shift micro operations. [8M]

 b) Explain about Arithmetic Micro operations in detailed. [7M]

 Or

4 a) What is the difference between a direct and an indirect address instruction? How

many references to memory are needed for each type of instruction to bring an

operand into a processor register? [8M]

 b) How an interrupt is recognized? Explain the interrupt cycle. [7M]

5 a) What are addressing modes? Give an overview of the addressing modes. [8M]

 b) Justify the statement “Stack computer consist of an operation code only with no

address field”. [7M]

 Or

6 a) Discuss the different addressing modes of an instruction. [8M]

 b) How stack is implemented in a general microprocessor system. [7M]

7 a) What is virtual memory? With the help of neat sketch explain the method of

virtual to physical address translation. [8M]

 b) Explain the READ and WRITE operations in Associative Memory. [7M]

 Or

8 a) What is cache memory? Explain different types of mapping from main memory to

cache memory. [8M]

 b) Give the hardware organization of associative memory. Why associative memory

is faster than other memories. Deduce the logic equation used to find the match in

the associative memory. [7M]

9 a) Explain about pipeline multiplexer. [8M]

 b) Write short note on i) Magnetic Disks ii) Magnetic tapes [7M]

 Or

10 a) Draw and explain arithmetic pipeline for floating point addition. [8M]

 b) Explain about Hypercube and Mesh network. [7M]

1 of 1

R19 SET - 2

 ||''|''||''||''''''|

Code No: R1921056

II B. Tech I Semester Regular Examinations, March - 2021

COMPUTER ORGANIZATION

(Com to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit

All Questions carry Equal Marks

~~~~~~~~~~~~~~~~~~~~~~~~~ 

 
1 a) Explain with the help of an example, the use of hamming code as error detection 

 and correction code. 

[8M] 

 b) State the condition in which overflow occurs in case of addition & subtraction of 

 two signed 2's complement number. How is it detected? 

[7M] 

  Or  

2 a) Convert hexadecimal number F2A7C2 to binary and octal numbers. [8M] 

 b) Explain the computer hierarchy of computer systems. [7M] 

3 a) Design a hardware circuit to implement logical shift, arithmetic shift and 

 circular shift operations. State your design specifications. 

[8M] 

 b) Explain how logic micro operation is work with suitable example? [7M] 

  Or  

4 a) A computer uses a memory unit with 256K words of 32 bits each. A binary 

Instruction code is stored in one word of memory. The instruction has four parts: 

an indirect bit, an operation code, a register code part to specify one of 64 

registers, and an address part. 

(a) How many bits are there in the operation code, the register code part, and the 

address part? 

(b) How many bits are there in the data and address inputs of the memory? 

[8M] 

 b) Explain the following with respect to logic micro operations 

i) Selective Set ii) Selective Complement iii) Selective Clear iv) Mask 

[7M] 

5 a) What do you mean by addressing mode? Explain the following addressing modes 

with examples. 

i) Index addressing mode ii) Relative addressing mode 

[8M] 

 b) What are different instruction formats we are using? [7M] 

  Or  

6 a) Explain various types of interrupts in detail. [8M] 

 b) Explain the difference between hardwired control and micro programmed 

control. Is it possible to have a hardwired control associated with a control 

memory? 

[7M] 

7 a) Explain in detail the different mappings used for cache memory. [8M] 

 b) Discuss the main features of associative memory Page Table. How does it work 

in mapping the virtual address into Physical memory address? 

[7M] 

  Or  

8 a) Draw the block diagram of a DMA controller and explain its functioning? [8M] 

 b) Explain about the direct mapping. [7M] 

1 of 2 

 

R19 SET - 3 R19 SET - 3 R19 SET - 3 R19 SET - 3 R19 SET - 3 



                      ||''|''||''||''''''|

 
Code No: R1921056 

 

 

9 a) Formulate a four segment instruction pipeline for a computer. Specify the 

operation to be performed in each segment. 

[8M] 

 b) Draw and explain arithmetic pipeline for floating point multiplication. [7M] 

  Or  

10 a) What is pipelining? Name the two pipeline organizations. Explain about the 

arithmetic pipeline with the help of an example. 

[8M] 

 b) Explain the characteristics of multiprocessor system. [7M] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 of 2 

R19 SET - 3 R19 SET - 3 R19 SET - 3 R19 SET - 3 R19 SET - 3 



                      ||''|''||''||''''''|

Code No: R1921056 

 

II B. Tech I Semester Regular Examinations, March - 2021 

COMPUTER ORGANIZATION 

(Com to CSE, IT) 

Time: 3 hours                                              Max. Marks: 75 
 

Answer any FIVE Questions each Question from each unit 

All Questions carry Equal Marks 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 a) Draw and explain Von Neumann Architecture. Explain Moore’s Law. [8M]

 b) Discuss Arithmetic addition and subtraction with signed-2’s complement

representation.

[7M]

 Or

2 a) Difference between RISC and CISC architectures. [8M]

 b) Explain about Booth’s multiplication algorithm and solve Multiply 9 and 7. [7M]

3 a) Explain the I/O instructions and type of I/O instructions. [8M]

 b) Explain the significance of the shift micro operations. [7M]

 Or

4 a) Design a hardware circuit to implement logical shift, arithmetic shift and circular

shift operations. State your design specifications.

[8M]

 b) Explain indirect address mode and how the effective address is calculated in this

case.

[7M]

5 a) Write the procedure to mitigate number of bits in micro instructions. [8M]

 b) Justify the statement “Stack computer consist of an operation code only with no

address field”.

[7M]

 Or

6 a) What is a micro-operation of list and explain the four categories of the most

common micro-operations?

[8M]

 b) What do you mean by addressing mode? Explain the following addressing modes

with examples.

i) Index addressing mode ii) Relative addressing mode.

[7M]

7 a) What is cache memory? Explain different types of mapping from main memory to

cache memory.

[8M]

 b) What is associative memory? Explain with the help of block diagram. Also

mention the situation in which associative memory can be effective utilized.

[7M]

 Or

8 a) Discuss the main features of associative memory Page Table. How does it work in

mapping the virtual address into Physical memory address?

[8M]

 b) Explain about Direct Memory Access (DMA). [7M]

9 a) Explain instruction pipeline with neat timing diagram. [8M]

 b) Explain about Hypercube and Mesh network. [7M]

 Or

10 a) Draw and explain arithmetic pipeline for floating point multiplication. [8M]

 b) Explain about Interconnection network. [7M]

 1 of 1

R19 SET - 4

|''|''|||''|'''|||'|

Code No: R1921056

II B. Tech I Semester Supplementary Examinations, September - 2021

COMPUTER ORGANIZATION
(Com to CSE, IT)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions each Question from each unit

All Questions carry Equal Marks

~~~~~~~~~~~~~~~~~~~~~~~~~ 

1 a) Explain how a binary number can be converted to an octal and a hexadecimal

number. 

[8M] 

b) Explain in detail about fixed-point representation. [7M] 

Or 

2 a) Design a 4-bit odd parity generator and checker and explain it. [8M] 

b) Draw a flowchart which explains multiplication of two signed magnitude fixed

point number.

[7M] 

3 a) With the help of block diagram, explain the 4-bit binary subtractor. [8M] 

b) With the help of a diagram explain one stage of arithmetic logic shift unit. [7M] 

Or 

4 a) Discuss in brief about the flowchart for basic computer operations. [8M] 

b) What is interrupt? Explain different types of interrupt. [7M] 

5 a) Illustrate the use of various addressing mode with examples. [8M] 

b) List and explain the functions of control unit. [7M] 

Or 

6 a) Writ about symbolic micro program and binary micro program. [8M] 

b) Discuss the two techniques to design the control unit. [7M] 

7 a) Explain the various available formats and storage capability of DVD. [8M] 

b) What do you mean by the associative memory? Give the Hardware organization of

associative memory.

[7M] 

Or 

8 a) Discuss the various cache block replacement algorithms. [8M] 

b) What are the different kinds of DMA? Explain. [7M] 

9 a) Explain multiprocessor system and its characteristics. [8M] 

b) Discuss the functioning of crossbar switching network. [7M] 

Or 

10 a) Explain the concept of speedup ratio with an example. [8M] 

b) Mention the pipeline conflicts that cause the instruction pipeline to deviate from its

normal operation.

[7M] 

1 of 1 

R19 SET - 1 


	Faculty Member                   Head of the Department Principal
	Computer Arithmetic:
	Addition and Subtraction:
	i. Addition and Subtraction with Signed-Magnitude Data:
	Hardware Implementation:
	Hardware Algorithm
	ii. Addition and Subtraction with Signed-2's Complement Data

	Multiplication Algorithms:
	The process of multiplication:
	Hardware Algorithm:
	Hardware implementation of Booth algorithm Multiplication:
	Hardware Algorithm for Booth Multiplication:

	Division Algorithms:
	Hardware Implementation for Signed-Magnitude Data:
	Divide Overflow
	Hardware Algorithm:

	Instruction Codes:
	Stored Program Organization
	Indirect Address
	direct address.

	Computer Registers:
	Common Bus System:

	Computer Instructions:
	Instruction Set Completeness

	Instruction Cycle:
	Fetch and Decode:
	Determine the Type of Instruction
	Register-Reference Instructions:
	The control function that initiates the rnicrooperation for

	Memory-Reference Instructions:
	AND : AND to AC
	ADD : ADD to AC
	LDA: Load to AC
	STA: Store AC
	BUN: Branch Unconditionally
	BSA: Branch and Save Return Address
	BSA: Branch and Save Return Address EX:
	ISZ: Increment and Skip if Zero

	Input-Output and Interrupt:
	Input-Output Configuration
	Input-Output Instructions
	Program Interrupt
	Interrupt Cycle

	Complete Computer Description:
	www.jntufastupdates.com

	Syllabus:
	Introduction:
	General Register Organization:
	R 1  R2 + R3
	Control word
	Examples of Microoperations:

	STACK Organization:
	Register Stack
	Push:
	SP  SP + 1 Increment stack pointer
	Pop:
	DR  M [SP] Read item from the top of stack
	Memory Stack
	Reverse Polish Notation
	+ AB Prefix or Polish notation
	  This hierarchy dictates that we first perform all arithmetic inside inner parentheses, then inside outer parentheses, and do multiplication and division operations before addition and subtraction operations.
	Higher priority *, /, % Lower priority +, –

	Instruction Formats:
	1. An accumulator-type organization:
	ADD X
	2. A general register type of organization:
	ADD R1 , R2 , R3
	ADD R1 , R2
	ADD R1 , X
	3. A stack organization:
	PUSH X
	ADD
	Three-Address Instructions:
	One-Address Instructions:

	Addressing Modes:
	Instruction format with mode field
	Ex: LDAC 5000
	EX: ADD (A), R1
	 effective address = address part of instruction + content of CPU register
	EX:
	Ex: LDAC A(XR)
	Ex: LDAC A(R) Assume R=1000, A=50
	= 1000 + 50=1050

	Data Transfer and Manipulation:
	OP REG TYPE RL COUNT

	Program Control:
	Status Bit Conditions:
	Conditional Branch Instructions:
	Subroutine Call and Return:
	Program interrupt:
	CISC Characteristics
	RISC Characteristics
	Overlapped Register Windows
	Berkeley RISC I

	Memory Hierarchy
	Memory Access Methods

	Main Memory
	Memory Address map:
	Auxiliary Memory
	Cache Memory
	Hit Ratio
	Associative Memory
	Memory Mapping and Concept of Virtual Memory
	Associative Mapping
	Direct Mapping
	Set Associative Mapping
	Replacement Algorithms
	Writing in to cache and cache Initialization:
	Cache Coherence:
	Virtual Memory
	Address mapping using pages:
	Associative memory page table:
	Page replacement
	UNIT – 5

	Introduction:
	Peripheral Devices
	Interfaces
	Asynchronous Data Transfer
	2. Handshaking:
	Source initiated Handshaking:
	Destination initiated handshaking:



	Modes of I/O Data Transfer
	Programmed I/O

	Interrupt Initiated I/O
	Direct Memory Access
	Priority Interrupt

